Given :
- A = {x: 2x² + 3x - 2 = 0 }
- B = {x : x² + 3x - 4 = 0 }
To find :
Solution :-
<u>The </u><u>first </u><u>set </u><u>is </u><u>,</u>
- A ={x : 2x² + 3x - 2 = 0}
<u>Solving</u><u> </u><u>the </u><u>Quadratic</u><u> equation</u><u> </u><u>,</u>
- 2x² + 3x - 2 = 0
- 2x² + 4x - x - 2 = 0
- 2x( x + 2) -1( x + 2 ) = 0
- (2x -1) ( x + 2) = 0
- x = 0.5 , -2
<u>Hence</u><u> </u><u>,</u>
<u>The </u><u>second</u><u> </u><u>set </u><u>is </u><u>,</u>
- B ={ x :x² + 3x - 4 = 0 }
<u>Solving</u><u> the</u><u> Quadratic</u><u> equation</u><u> </u><u>,</u>
- x² + 3x - 4 = 0
- x² + 4x - x - 4 = 0
- x( x + 4)-1 ( x +4) = 0
- (x + 4) ( x -1) = 0
- x = 1 , -4
<u>Hence</u><u> </u><u>,</u>
<u>Now </u><u>,</u>
- A U B = { 0.5 , 1 , 4 , -2}
- A Π B = {∅ }
Since AΠ B is a null set , hence ,
18.0 1
- 0.4 17.0
_____ - 0.4
-------> ____
17.6
First step you should do is s<span>implify both sides of your equation:
</span>29-(x+8)=6x-7
Distribute the Negative Sign:
29+-1(x+8)=6x-7
29+-1x+(-1)(8)=6x-7
29+-x+-8=6x-7
29+-x+-8=6x+-7
<span>Combine Like Terms:
</span>(-x)+(29+-8)=6x-7
-x+21=6x-7
<span>Subtract 6x from both sides:
</span>-x+21-6x=6x-7-6x
-7x+21=-7
<span>Subtract 21 from both sides:
</span>-7x+21-21=-7-21
-7x=-28
<span>Divide both sides by -7:
</span>-7x/-7 = -28/-7
And now your answer should be:
x=4
~~~~~
Good luck~ Sans
Answer:
None of the above
Explanation:
To find the type of lines they create, first find the slope of the equations.(Change form to y intercept)
4x-2y=-5
-2y=-4x-5
y=2x+(5/2)
Slope=2
-2x+3y=-3
3y=2x-3
y=(2/3)x-1
Slope=2/3
So, one has slope=2 and the other has slope=2/3. They’re not parallel because slopes are not the same. They’re not perpendicular because the slopes are not opposites. They’re not equal because their equations are not the same. So, none of the above.
Answer:
1;infroei[q
Step-by-step explanation:
[qioerf1m['