Binomial
Binomial distribution can be used because the situation satisfies all the following conditions:1. Number of trials is known and remains constant (n=10)2. Each trial is Bernoulli (i.e. exactly two possible outcomes) (defective/normal)3. Probability is known and remains constant throughout the trials (p=5%)4. All trials are random and independent of the others (assumed from context)The number of successes, x, is then given by

where

Substituting values, p=0.05, n=10, X=exactly 1
for X=1 (defective out of n)
P(X=1)=C(10,1)0.05^1*(1-0.05)^(10-1)
=10!/(1!9!)*0.05*0.95^9
=10*0.05*0.0630249
=0.315125 (to 6 places of decimal)
Answer: 63 votes
Step-by-step explanation:
Simply multiply 81 by 7/9 to get the answer, 63 votes.
Hope it helps :) and let me know if you want me to elaborate.
1. b = $95.94 / 6
= $15.99
t = $15.99 / 20
= $0.80
2. A: $1.28 / 8 = $0.16 per oz
B: $1.68 / 12 = $0.14 per oz
Difference: $0.02 per oz
<h3>
Answer: n = -11</h3>
=========================================================
Explanation:
Since x-2 is a factor of f(x), this means f(2) = 0.
More generally, if x-k is a factor of p(x), then p(k) = 0. This is a special case of the remainder theorem.
So if we plugged x = 2 into f(x), we'd get
f(x) = x^3+x^2+nx+10
f(2) = 2^3+2^2+n(2)+10
f(2) = 8+4+2n+10
f(2) = 2n+22
Set this equal to 0 and solve for n
2n+22 = 0
2n = -22
n = -22/2
n = -11 is the answer
Therefore, x-2 is a factor of f(x) = x^3+x^2-11x+10
Plug x = 2 into that updated f(x) function to find....
f(x) = x^3+x^2-11x+10
f(2) = 2^3+2^2-11(2)+10
f(2) = 8+4-22+10
f(2) = 0
Which confirms our answer.
1 x 10-3 make sure the -3 is above the 10.