Answer:
6
Step-by-step explanation:
Speed = Distance/time
Therefore time must = distance/speed
Since the two students are running apart from eachother, we can add their speeds together.
Also we can subtract 10 feet from our goal of 1870 since they're already 10 feet apart.
1860 feet/(150+1650) feet per minute
We can cancel out the feet since it's a common term.
And we're left with 6 minutes.
The corcumference C of a circle is C= 2 x pie x radius
So radius= C/(2pie)
Volume of cylinder= pie x r(squared) x h
Answer:
Step-by-step explanation:
1 In general, given a{x}^{2}+bx+cax
2
+bx+c, the factored form is:
a(x-\frac{-b+\sqrt{{b}^{2}-4ac}}{2a})(x-\frac{-b-\sqrt{{b}^{2}-4ac}}{2a
2a
−b+√
b
2
−4ac
)(x−
2a
−b−√
b
2
−4ac
)
2 In this case, a=1a=1, b=-2b=−2 and c=-2c=−2.
(x-\frac{2+\sqrt{{(-2)}^{2}-4\times -2}}{2})(x-\frac{2-\sqrt{{(-2)}^{2}-4\times -2}}{2})(x−
2
2+√
(−2)
2
−4×−2
)(x−
2
2−√
(−2)
2
−4×−2
)
3 Simplify.
(x-\frac{2+2\sqrt{3}}{2})(x-\frac{2-2\sqrt{3}}{2})(x−
2
2+2√
3
)(x−
2
2−2√
3
)
4 Factor out the common term 22.
(x-\frac{2(1+\sqrt{3})}{2})(x-\frac{2-2\sqrt{3}}{2})(x−
2
2(1+√
3
)
)(x−
2
2−2√
3
)
5 Cancel 22.
(x-(1+\sqrt{3}))(x-\frac{2-2\sqrt{3}}{2})(x−(1+√
3
))(x−
2
2−2√
3
)
6 Simplify brackets.
(x-1-\sqrt{3})(x-\frac{2-2\sqrt{3}}{2})(x−1−√
3
)(x−
2
2−2√
3
)
7 Factor out the common term 22.
(x-1-\sqrt{3})(x-\frac{2(1-\sqrt{3})}{2})(x−1−√
3
)(x−
2
2(1−√
3
)
)
8 Cancel 22.
(x-1-\sqrt{3})(x-(1-\sqrt{3}))(x−1−√
3
)(x−(1−√
3
))
9 Simplify brackets.
(x-1-\sqrt{3})(x-1+\sqrt{3})(x−1−√
3
)(x−1+√
3
)
Given:
The two points on a coordinate plane are C(-5,-1) and D(0,3).
To find:
The distance between C and D.
Solution:
Distance formula:
Using the distance formula, the distance between C(-5,-1) and D(0,3) is
On further simplification, we get
Therefore, the distance between C and D is 6.40 units.