Answer:
A. (1,0)
Step-by-step explanation:
When you're solving a system of equations algebraically, you're finding the point that exists on both functions. So, when you're finding the solution graphically, you just need to find the point where the two functions intersect. In this case, it's A. (1,0)
The positions of the sun, earth and shooting star form a right angled triangle, where distance between earth and sun is 'y', and the angle 'x°' is given
Now, in a right angled triangle using trigonometry, we can determine a side of the triangle is one of the sides and one of the angles is known
Here, if we use cos x =
we can determine the distance between the shooting star and the sun. This can be done because we know that the base is 'y', the angle is x° and the hypotenuse represents the distance between the sun and the shooting star
Note: cos values for each x are definite.

- Given - <u>A </u><u>trapezium</u><u> </u><u>ABCD </u><u>with </u><u>non </u><u>parallel </u><u>sides </u><u>of </u><u>measure </u><u>1</u><u>5</u><u> </u><u>cm </u><u>each </u><u>!</u><u> </u><u>along </u><u>,</u><u> </u><u>the </u><u>parallel </u><u>sides </u><u>are </u><u>of </u><u>measure </u><u>1</u><u>3</u><u> </u><u>cm </u><u>and </u><u>2</u><u>5</u><u> </u><u>cm</u>
- To find - <u>Area </u><u>of </u><u>trapezium</u>
Refer the figure attached ~
In the given figure ,
AB = 25 cm
BC = AD = 15 cm
CD = 13 cm
<u>Construction</u><u> </u><u>-</u>

Now , we can clearly see that AECD is a parallelogram !
AE = CD = 13 cm
Now ,

Now , In ∆ BCE ,

Now , by Heron's formula

Also ,

<u>Since </u><u>we've </u><u>obtained </u><u>the </u><u>height </u><u>now </u><u>,</u><u> </u><u>we </u><u>can </u><u>easily </u><u>find </u><u>out </u><u>the </u><u>area </u><u>of </u><u>trapezium </u><u>!</u>

hope helpful :D
ben owes more money since he has a debt of $ 93 and noam had a debt of only $ 70
hope that helps !