Answer:
224 miles
Step-by-step explanation:
What you would do is take the 3 hours times the 46 mph to get 138 miles.
3*46=138
Next, multiply the 2 hours by the 43 mph to get 86 miles.
2*43=86
Lastly, you're going to add the two.
138+86=224 miles.
5. m∠C = 95°
6. m∠C = 70°
7. The other acute angle in the right triangle = 70°
8. m∠C = 70°
9. m∠C = 60° [equilateral triangle]
10. Measure of the exterior angle at ∠C = 110°
11. m∠B = 70°
12. m∠Z = 70°
<h3>What are Triangles?</h3>
A triangle is a 3-sided polygon with three sides and three angles. The sum of all its interior angles is 180 degrees. Some special triangles are:
- Isosceles triangle: has 2 equal base angles.
- Equilateral triangle: has three equal angles, each measuring 60 degrees.
- Right Triangle: Has one of its angles as 90 degrees, while the other two are acute angles.
5. m∠C = 180 - 50 - 35 [triangle sum theorem]
m∠C = 95°
6. m∠C = 180 - 25 - 85 [triangle sum theorem]
m∠C = 70°
7. The other acute angle in the right triangle = 180 - 90 - 25 [triangle sum theorem]
The other acute angle = 70°
8. m∠C = 180 - 55 - 55 [isosceles triangle]
m∠C = 70°
9. m∠C = 60° [equilateral triangle]
10. Measure of the exterior angle at ∠C = 50 + 60
Measure of the exterior angle at ∠C = 110°
11. m∠B = 115 - 45
m∠B = 70°
12. m∠Z = 180 - 35 - 75
m∠Z = 70°
Learn more about triangles on:
brainly.com/question/25215131
#SPJ1
I don’t understand the language
To prove a similarity of a triangle, we use angles or sides.
In this case we use angles to prove
∠ACB = ∠AED (Corresponding ∠s)
∠AED = ∠FDE (Alternate ∠s)
∠ABC = ∠ADE (Corresponding ∠s)
∠ADE = ∠FED (Alternate ∠s)
∠BAC = ∠EFD (sum of ∠s in a triangle)
Now we know the similarity in the triangles.
But it is necessary to write the similar triangle according to how the question ask.
The question asks " ∆ABC is similar to ∆____. " So we find ∠ABC in the prove.
∠ABC corressponds to ∠FED as stated above.
∴ ∆ABC is similar to ∆FED
Similarly, if the question asks " ∆ACB is similar to ∆____. "
We answer as ∆ACB is similar to ∆FDE.
Answer is ∆ABC is similar to ∆FED.
Answer:

Step-by-step explanation:




<h3>Hope it is helpful...</h3>