The volume (in liters) of CO₂ that can be consumed at STP by 435 g Na₂O₂ is 125 L of Co₂
<u><em>calculation</em></u>
2Na₂O₂(s) +2 CO₂ (g)→ 2 Na₂CO₃(s) + O₂(g)
Step 1 : find the moles of Na₂O₂
moles = mass÷ molar mass
from periodic table the molar mass of Na₂O₂ = (23 x2) +( 16 x2) = 78 g/mol
moles= 435 g÷ 78 g/mol = 5.58 moles
Step 2: use the mole ratio to determine the moles of CO₂
from given equation Na₂O₂ : CO₂ =2 :2 =1:1
Therefore the moles of CO₂ is also = 5.58 moles
Step 3: find the volume of CO₂ at STP
that is at STP 1 mole of a gas = 22.4 L
5.58 moles = ? l
<em>by cross multiplication</em>
= (5.58 moles x 22.4 L) / 1 mole = 125 L
Answer:
at the nuclear reactor site
Explanation:
In the United States, liquid high-level waste is stored in underground tanks pending vitrification. High-level waste is stored at the nuclear reactor site.
Such waste was created by the weapons programs of the cold war and the Manhattan project. This waste can not be vitrified as there were not enough funds for further processing.
Answer:
A.Cells
Explanation:
bugs eggs and bones aren't the smaller than cells.
Answer:
A: Calcium is a group 2 element with two valence electrons. Therefore, it is very reactive and gives up electrons in chemical reactions. It is likely to react with an element with six valence electrons that “wants” to gain two electrons. This would be an element in group 6, such as oxygen.