Answer: E. All of the above statements are true
Step-by-step explanation:
The mean of sampling distribution of the mean is simply the population mean from which scores were being sampled. This implies that when population has a mean μ, it follows that mean of sampling distribution of mean will also be μ.
It should also be noted that the distribution's shape is symmetric and normal and there are no outliers from its overall pattern.
The statements about the sampling distribution of the sample mean, x-bar that are true include:
• The sampling distribution is normal regardless of the shape of the population distribution, as long as the sample size, n, is large enough.
• The sampling distribution is normal regardless of the sample size, as long as the population distribution is normal. • The sampling distribution's mean is the same as the population mean.
• The sampling distribution's standard deviation is smaller than the population standard deviation.
Therefore, option E is the correct answer as all the options are true.
Answer:
18.0
Step-by-step explanation:
==>Given:
Triangle with sides, 16, 30, and x, and a measure of an angle corresponding to x = 30°
==>Required:
Value of x to the nearest tenth
==>Solution:
Using the Cosine rule: c² = a² + b² - 2abcos(C)
Let c = x,
a = 16
b = 30
C = 30°
Thus,
c² = 16² + 30² - 2*16*30*cos 30°
c² = 256 + 900 - 960 * 0.8660
c² = 1,156 - 831.36
c² = 324.64
c = √324.64
c = 18.017769
x ≈ 18.0 (rounded to nearest tenth)
Answer:
13
Step-by-step explanation:
12×7 = 84,
so the scale ratio is 1/7
now 91×1/7
= 91/7
= 13
About 99.7% of vehicles whose speeds are between 59 miles per hour and 77 miles per hour.
Empirical rule states that for a normal distribution, 68% lie within one standard deviations, 95% lie within two standard deviations, and 99.7% lie within three standard deviations of the mean.
Given that mean (μ) = 68 miles per hour, standard deviation (σ) = 3 miles per hour.
68% lie within one standard deviation = (μ ± σ) = (68 ± 3) = (65, 71).
Hence 68% of the vehicle speed is between 65 miles per hour and 71 miles per hour.
95% lie within two standard deviation = (μ ± 2σ) = (68 ± 2*3) = (62, 74).
Hence 95% of the vehicle speed is between 62 miles per hour and 74 miles per hour.
99.7% lie within three standard deviation = (μ ± 3σ) = (68 ± 3*3) = (59, 77).
Hence 99.7% of the vehicle speed is between 59 miles per hour and 77 miles per hour.
Find out more at: brainly.com/question/14468516