Answer:
the solution is (-1, 2)
Step-by-step explanation:
Let's solve the system
(3x + 4y = 5)
(2x - 3y = -8)
using the method of elimination by addition and subtraction. Notice that if we multiply all terms of the first equation by 3 and all terms of the second by 4, y as a variable will temporarily disappear:
9x + 12y = 15
8x - 12y = -32
-----------------------
17x = - 17, so x = -1.
Replacing x in the second equation by -1, we get:
2(-1) - 3y = -8, or
2 + 3y = 8,
or 3y = 6. Thus, y = 2, and the solution is (-1, 2).
All three triangles are congruent by SAS
Question:
Consider the sequence of numbers:
Which statement is a description of the sequence?
(A) The sequence is recursive, where each term is 1/4 greater than its preceding term.
(B) The sequence is recursive and can be represented by the function
f(n + 1) = f(n) + 3/8 .
(C) The sequence is arithmetic, where each pair of terms has a constant difference of 3/4 .
(D) The sequence is arithmetic and can be represented by the function
f(n + 1) = f(n)3/8.
Answer:
Option B:
The sequence is recursive and can be represented by the function
Explanation:
A sequence of numbers are
Let us first change mixed fraction into improper fraction.
To find the pattern of the sequence.
To find the common difference between the sequence of numbers.
Therefore, the common difference of the sequence is 3.
That means each term is obtained by adding to the previous term.
Hence, the sequence is recursive and can be represented by the function
Answer:
y -6 = 1/3(x +3) or y = 1/3x +7
Step-by-step explanation:
The slope of the line describing the given path is the x-coefficient, -3. The slope of the perpendicular line will be the negative reciprocal of that:
m = -1/(-3) = 1/3
The point-slope form of the equation for a line can be used to write the equation for the new path:
y -k = m(x -h) . . . . . line with slope m through point (h, k)
For m=1/3 and (h, k) = (-3, 6), the new path can be represented by ...
y -6 = 1/3(x +3) . . . . point-slope form
y = (1/3)x +7 . . . . . . slope-intercept form