Answer:
this app is freakin broken you agree
The volume of the region R bounded by the x-axis is:
<h3>What is the volume of the solid revolution on the X-axis?</h3>
The volume of a solid is the degree of space occupied by a solid object. If the axis of revolution is the planar region's border and the cross-sections are parallel to the line of revolution, we may use the polar coordinate approach to calculate the volume of the solid.
In the graph, the given straight line passes through two points (0,0) and (2,8).
Therefore, the equation of the straight line becomes:
where:
- (x₁, y₁) and (x₂, y₂) are two points on the straight line
Thus, from the graph let assign (x₁, y₁) = (0, 0) and (x₂, y₂) = (2, 8), we have:
y = 4x
Now, our region bounded by the three lines are:
Similarly, the change in polar coordinates is:
where;
- x² + y² = r² and dA = rdrdθ
Now
- rsinθ = 0 i.e. r = 0 or θ = 0
- rcosθ = 2 i.e. r = 2/cosθ
- rsinθ = 4(rcosθ) ⇒ tan θ = 4; θ = tan⁻¹ (4)
- ⇒ r = 0 to r = 2/cosθ
- θ = 0 to θ = tan⁻¹ (4)
Then:
Learn more about the determining the volume of solids bounded by region R here:
brainly.com/question/14393123
#SPJ1
Let f(x) = p(x)/q(x), where p and q are polynomials and reduced to lowest terms. (If p and q have a common factor, then they contribute removable discontinuities ('holes').)
Write this in cases:
(i) If deg p(x) ≤ deg q(x), then f(x) is a proper rational function, and lim(x→ ±∞) f(x) = constant.
If deg p(x) < deg q(x), then these limits equal 0, thus yielding the horizontal asymptote y = 0.
If deg p(x) = deg q(x), then these limits equal a/b, where a and b are the leading coefficients of p(x) and q(x), respectively. Hence, we have the horizontal asymptote y = a/b.
Note that there are no obliques asymptotes in this case. ------------- (ii) If deg p(x) > deg q(x), then f(x) is an improper rational function.
By long division, we can write f(x) = g(x) + r(x)/q(x), where g(x) and r(x) are polynomials and deg r(x) < deg q(x).
As in (i), note that lim(x→ ±∞) [f(x) - g(x)] = lim(x→ ±∞) r(x)/q(x) = 0. Hence, y = g(x) is an asymptote. (In particular, if deg g(x) = 1, then this is an oblique asymptote.)
This time, note that there are no horizontal asymptotes. ------------------ In summary, the degrees of p(x) and q(x) control which kind of asymptote we have.
I hope this helps!
with it's formula
Area of Triangle = (1/2)(ab)sin(C) – This formula is used when two sides and the angle in between them are known. It can be obtained from the basic formula, Area of Triangle = 0.5 × base × height. The height with respect to side 'a' can be written in as b×sin(C), where C is the angle between a and b.
Original price of the radio is $64.30
Sale price - $51.44
Discount rate - 20%
This means that $51.44 is the discounted price or is equivalent to 80% of the original price, since the 20% equivalent is deducted from the original price.
To get the original price, divide $51.44 by its corresponding percentage, 80%.
$51.44 / 80% = $64.30
To get the discount, multiply the original price by its discount rate
$64.30 x 20% = $12.86
To get the sales price, deduct the discount from the original price.
$64.30 - $12.86 = $51.44
100% - 20% = 80%