- assume the unknown number as x or y
1356 ÷ y = 31
2. move y ( divide — multiply)
1356 = 31y
3. move the 31 ( multiply — divide)
1356 ÷ 31 = y
4. the answer will be:
31.53 or 32 (rounded off)
Answer:
.25
Step-by-step explanation:
The problem specifically says that you have to round to the nearest hundredth, not the nearest tenth. The equation of 12.772/50.272 = .254057924
Rounding this to the nearest hundredth results in the answer .25, not .30
T=months so if you have 7 months you would plug 7 in for (t)
making the equation g(7) = 2(7)
Answer:
Because it cannot be written as a fraction
Step-by-step explanation:
The square root of any non-perfect square will always be irrational and cannot be written as a fraction. The sqrt(21) has no repeating digits because its digits go on forever.
Answer:
21.77% probability that the proportion who are satisfied with the way that things are going in their life exceeds 0.85
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
For proportions p in a sample of size n, we have that 
In this problem:

In a sample of 100 Americans, what is the probability that the proportion who are satisfied with the way that things are going in their life exceeds 0.85
This is 1 subtracted by the pvalue of Z when X = 0.85. So



has a pvalue of 0.7823
1 - 0.7823 = 0.2177
21.77% probability that the proportion who are satisfied with the way that things are going in their life exceeds 0.85