Answer:
a) 25.15
b)
x = 1
y = t
z = (4pi)^2 + t *(8pi) = 4pi(4pi + 2t)
c) (x,y) = (1, -2pi)
Step-by-step explanation:
a)
First lets calculate the velocity, that is, the derivative of c(t) with respect to t:
v(t) = (-sin(t), cos(t), 2t)
The velocity at t0=4pi is:
v(4pi) = (0, 1, 8pi)
And the speed will be:
s(4pi) = √(0^2+1^2+ (8pi)^2) = 25.15
b)
The tangent line to c(t) at t0 = 4pi has the parametric form:
(x,y,z) = c(4pi) + t*v(4pi)
Since
c(4pi) = (1, 0, (4pi)^2)
The tangent curve has the following components:
x = 1
y = t
z = (4pi)^2 + t *(8pi) = 4pi(4pi + 2t)
c)
The intersection with the xy plane will occurr when z = 0
This happens at:
t1 = -2pi
Therefore, the intersection will occur at:
(x,y) = (1, -2pi)
#2 5.88 #3 6.510 #4 7.578 #5 9.835 #6 11.910 #7 3.72
To calculate Net Worth, Subtract Total Liabilities from Total Assets:
$107550
- 20525
-------------
Answer:
The approximate percentage of SAT scores that are less than 865 is 16%.
Step-by-step explanation:
The Empirical Rule states that, for a normally distributed random variable:
Approximately 68% of the measures are within 1 standard deviation of the mean.
Approximately 95% of the measures are within 2 standard deviations of the mean.
Approximately 99.7% of the measures are within 3 standard deviations of the mean.
In this problem, we have that:
Mean of 1060, standard deviation of 195.
Empirical Rule to estimate the approximate percentage of SAT scores that are less than 865.
865 = 1060 - 195
So 865 is one standard deviation below the mean.
Approximately 68% of the measures are within 1 standard deviation of the mean, so approximately 100 - 68 = 32% are more than 1 standard deviation from the mean. The normal distribution is symmetric, which means that approximately 32/2 = 16% are more than 1 standard deviation below the mean and approximately 16% are more than 1 standard deviation above the mean. So
The approximate percentage of SAT scores that are less than 865 is 16%.
Answer:
\tan \left(\frac{\sin \left(x\right)-\cos \left(x\right)}{\cos \left(x\right)+\sin \left(x\right)}\right)
Step-by-step explanation: