The question is incomplete! Complete question along with answer and step by step explanation is provided below.
Question:
Based on the following information calculate the expected return and standard deviation for two stocks:
State of Economy Recession Normal Boom
Probability of State of Economy .15 .55 0.30
Rate of Return if State Occurs
Stock A .04 .09 .17
Stock B -.17 .12 .27
Answer:
The expected return of stock A is 10.65%
The expected return of stock B is 12.15%
The standard deviation of stock A is 4.5%
The standard deviation of stock B is 13.92%
Explanation:
The expected return of stock A is given by
![E(A) = \sum ROR_{A} \cdot P \\\\E(A) = 0.04\cdot 0.15 + 0.09 \cdot 0.55 + 0.17 \cdot 0.30 \\\\E(A) = 0.006 + 0.0495 + 0.051 \\\\E(A) = 0.1065 \\\\](https://tex.z-dn.net/?f=E%28A%29%20%3D%20%5Csum%20ROR_%7BA%7D%20%5Ccdot%20P%20%5C%5C%5C%5CE%28A%29%20%20%3D%20%200.04%5Ccdot%200.15%20%2B%200.09%20%5Ccdot%200.55%20%2B%200.17%20%5Ccdot%200.30%20%5C%5C%5C%5CE%28A%29%20%20%3D%200.006%20%2B%200.0495%20%2B%200.051%20%5C%5C%5C%5CE%28A%29%20%20%3D%200.1065%20%5C%5C%5C%5C)
Therefore, the expected return of stock A is 10.65%
The expected return of stock B is given by
![E(B) = \sum ROR_{B} \cdot P \\\\E(B) = -0.17\cdot 0.15 + 0.12 \cdot 0.55 + 0.27 \cdot 0.30 \\\\E(B) = -0.0255 + 0.066 + 0.081 \\\\E(B) = 0.1215 \\\\](https://tex.z-dn.net/?f=E%28B%29%20%3D%20%5Csum%20ROR_%7BB%7D%20%5Ccdot%20P%20%5C%5C%5C%5CE%28B%29%20%20%3D%20%20-0.17%5Ccdot%200.15%20%2B%200.12%20%5Ccdot%200.55%20%2B%200.27%20%5Ccdot%200.30%20%5C%5C%5C%5CE%28B%29%20%20%3D%20-0.0255%20%2B%200.066%20%2B%200.081%20%5C%5C%5C%5CE%28B%29%20%20%3D%200.1215%20%5C%5C%5C%5C)
Therefore, the expected return of stock B is 12.15%
The standard deviation of stock A is given by
Therefore, the standard deviation of stock A is 4.5%
The standard deviation of stock B is given by
Therefore, the standard deviation of stock B is 13.92%