The answer is c.
hope this helps! :)
Answer:
Explanation:
We shall apply conservation of momentum law in vector form to solve the problem .
Initial momentum = 0
momentum of 12 g piece
= .012 x 37 i since it moves along x axis .
= .444 i
momentum of 22 g
= .022 x 34 j
= .748 j
Let momentum of third piece = p
total momentum
= p + .444 i + .748 j
so
applying conservation law of momentum
p + .444 i + .748 j = 0
p = - .444 i - .748 j
magnitude of p
= √ ( .444² + .748² )
= .87 kg m /s
mass of third piece = 58 - ( 12 + 22 )
= 24 g = .024 kg
if v be its velocity
.024 v = .87
v = 36.25 m / s .
Answer:
F = 0.78[N]
Explanation:
The given values correspond to forces, we must remember or take into account that the forces are vector quantities, that is, they have magnitude and direction. Since we have two X-Y coordinate axes (two-dimensional), we are going to decompose each of the forces into the X & y components.
<u>For F₁</u>
<u />
<u />
<u>For F₂</u>
![F_{x}=2*cos(60)\\F_{x}=1[N]\\F_{y}=-2*sin(60)\\F_{y}=-1.73[N]](https://tex.z-dn.net/?f=F_%7Bx%7D%3D2%2Acos%2860%29%5C%5CF_%7Bx%7D%3D1%5BN%5D%5C%5CF_%7By%7D%3D-2%2Asin%2860%29%5C%5CF_%7By%7D%3D-1.73%5BN%5D)
<u>For F₃</u>
<u />
<u />
Now we can sum each one of the forces in the given axes:
![F_{x}=1-0.866=0.134[N]\\F_{y}=2-1.73+0.5\\F_{y}=0.77[N]](https://tex.z-dn.net/?f=F_%7Bx%7D%3D1-0.866%3D0.134%5BN%5D%5C%5CF_%7By%7D%3D2-1.73%2B0.5%5C%5CF_%7By%7D%3D0.77%5BN%5D)
Now using the Pythagorean theorem we can find the total force.
![F=\sqrt{(0.134)^{2} +(0.77)^{2}}\\F= 0.78[N]](https://tex.z-dn.net/?f=F%3D%5Csqrt%7B%280.134%29%5E%7B2%7D%20%2B%280.77%29%5E%7B2%7D%7D%5C%5CF%3D%200.78%5BN%5D)
Answer:
Speed changes at the rate of 24 m/s for each second over time.
Explanation:
We are told the object's acceleration is equal to 24 m/s²
Now we know that acceleration can also be defined as the rate of change of speed with time. Also speed has a unit known as m/s.
Thus, we can rephrase the acceleration in this question to mean;
Speed changes at the rate of 24 m/s for every second with time.
The time described above is known as the waves Period.
The time which it takes for a particle to complete one full cycle is known as the period. Period is normally measured in seconds. Frequency on the other hand is the number of cycles which are completed in a given period of time e.g a second. periodic time T is given by reciprocal of frequency (1/f).