Please try to follow me, as I demonstrate a method of solution.
This could get complicated. I'll try to go slowly, and you must
stop me if I do anything that's not clear.
Ready ?
You said that -5c/8 = 20
Multiply each side by 8: -5c = 160
Divide each side by 5 : - c = 32
Multiply each side by -1 : c = -32
Y=(x-2)^2+3
^^^^^^^^^^^^^^^^
Answer:
The calculated value of t= 0.1908 does not lie in the critical region t= 1.77 Therefore we accept our null hypothesis that fatigue does not significantly increase errors on an attention task at 0.05 significance level
Step-by-step explanation:
We formulate null and alternate hypotheses are
H0 : u1 < u2 against Ha: u1 ≥ u 2
Where u1 is the group tested after they were awake for 24 hours.
The Significance level alpha is chosen to be ∝ = 0.05
The critical region t ≥ t (0.05, 13) = 1.77
Degrees of freedom is calculated df = υ= n1+n2- 2= 5+10-2= 13
Here the difference between the sample means is x`1- x`2= 35-24= 11
The pooled estimate for the common variance σ² is
Sp² = 1/n1+n2 -2 [ ∑ (x1i - x1`)² + ∑ (x2j - x`2)²]
= 1/13 [ 120²+360²]
Sp = 105.25
The test statistic is
t = (x`1- x` ) /. Sp √1/n1 + 1/n2
t= 11/ 105.25 √1/5+ 1/10
t= 11/57.65
t= 0.1908
The calculated value of t= 0.1908 does not lie in the critical region t= 1.77 Therefore we accept our null hypothesis that fatigue does not significantly increase errors on an attention task at 0.05 significance level
Usando la distribución binomial, hay una probabilidad de 0.8926 = 89.26% de que el guardia de seguridad encuentre al menos uno en la base militar restringida.
<h3>¿Qué es la distribución binomial?</h3>


Los parámetros son:
- n es el número de ensayos.
- p es la probabilidad de éxito en un ensayo
En este problema, hay que:
- 20% de los empleados de la población civil que está en una base militar restringida porta su identificación personal, o sea p = 0.2.
- Llegan 10 empleados, o sea, n = 10.
La probabilidad de que el guardia de seguridad encuentre al menos uno en la base militar restringida es dada por:

En que:


Por eso:

Hay una probabilidad de 0.8926 = 89.26% de que el guardia de seguridad encuentre al menos uno en la base militar restringida.
Puede-se aprender más a cerca de la distribución binomial en brainly.com/question/25132113
Answer:
the composition of the expression [g-f.h](x) is g(x)=5x2