Answer:
r
Step-by-step explanation:
Answer:

Step-by-step explanation:
3 envelopes having 2 red card
2 envelopes having 1 red card and 1 black card
1 envelope having 2 black cards
We are given that . An envelope is selected at random and a card is withdrawn and found to be red.
So, No. of ways of envelope having red card = 3+2 = 5
No. of required ways of envelope having 1 red card and 1 black card = 2
So, probability of getting an envelope having 1 red card and 1 black card = 
Hence The chance the other card is black is 
8% I am sorry if I am wrong
45 is the answer have a really good day
<h2>
Hello!</h2>
The answers are:
The possible values for x in the equation, are:
First option, ![5\sqrt[3]{3}](https://tex.z-dn.net/?f=5%5Csqrt%5B3%5D%7B3%7D)
Second option, ![\sqrt[3]{375}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B375%7D)
<h2>
Why?</h2>
To solve the problem, we need to remember the following properties of the exponents and roots:
![a\sqrt[n]{b}=\sqrt[n]{a^{n}*b} \\\\\sqrt[n]{a^{m} }=a^{\frac{m}{n}}\\\\(a^{b})^{c}=a^{b*c}](https://tex.z-dn.net/?f=a%5Csqrt%5Bn%5D%7Bb%7D%3D%5Csqrt%5Bn%5D%7Ba%5E%7Bn%7D%2Ab%7D%20%5C%5C%5C%5C%5Csqrt%5Bn%5D%7Ba%5E%7Bm%7D%20%7D%3Da%5E%7B%5Cfrac%7Bm%7D%7Bn%7D%7D%5C%5C%5C%5C%28a%5E%7Bb%7D%29%5E%7Bc%7D%3Da%5E%7Bb%2Ac%7D)
Then, we are given the expression:

So, finding "x", we have:
![x^{3}=375\\\\(x^{3})^{\frac{1}{3} } =(375)^{\frac{1}{3}}\\\\x=\sqrt[3]{375}=\sqrt[3]{125*3}=\sqrt[3]{125}*\sqrt[3]{3}=5\sqrt[3]{3}](https://tex.z-dn.net/?f=x%5E%7B3%7D%3D375%5C%5C%5C%5C%28x%5E%7B3%7D%29%5E%7B%5Cfrac%7B1%7D%7B3%7D%20%7D%20%3D%28375%29%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%5C%5C%5C%5Cx%3D%5Csqrt%5B3%5D%7B375%7D%3D%5Csqrt%5B3%5D%7B125%2A3%7D%3D%5Csqrt%5B3%5D%7B125%7D%2A%5Csqrt%5B3%5D%7B3%7D%3D5%5Csqrt%5B3%5D%7B3%7D)
Hence, the possible values for x in the equation, are:
First option, ![5\sqrt[3]{3}](https://tex.z-dn.net/?f=5%5Csqrt%5B3%5D%7B3%7D)
Second option, ![\sqrt[3]{375}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B375%7D)
Have a nice day!