Answer:
time in weeks
Step-by-step explanation:
"determine the location" or namely, is it inside the circle, outside the circle, or right ON the circle?
well, we know the center is at (1,-5) and it has a radius of 5, so the distance from the center to any point on the circle will just be 5, now if (4,-1) is less than that away, is inside, if more than that is outiside and if it's exactly 5 is right ON the circle.
well, we can check by simply getting the distance from the center to the point (4,-1).
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ \stackrel{center}{(\stackrel{x_1}{1}~,~\stackrel{y_1}{-5})}\qquad (\stackrel{x_2}{4}~,~\stackrel{y_2}{-1})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ d = \sqrt{[4-1]^2+[-1-(-5)]^2}\implies d=\sqrt{(4-1)^2+(-1+5)^2} \\\\\\ d = \sqrt{3^2+4^2}\implies d =\sqrt{9+16}\implies d=\sqrt{25}\implies \stackrel{\textit{right on the circle}}{d = 5}](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20%5Cstackrel%7Bcenter%7D%7B%28%5Cstackrel%7Bx_1%7D%7B1%7D~%2C~%5Cstackrel%7By_1%7D%7B-5%7D%29%7D%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B4%7D~%2C~%5Cstackrel%7By_2%7D%7B-1%7D%29%5Cqquad%20%5Cqquad%20d%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20d%20%3D%20%5Csqrt%7B%5B4-1%5D%5E2%2B%5B-1-%28-5%29%5D%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B%284-1%29%5E2%2B%28-1%2B5%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20d%20%3D%20%5Csqrt%7B3%5E2%2B4%5E2%7D%5Cimplies%20d%20%3D%5Csqrt%7B9%2B16%7D%5Cimplies%20d%3D%5Csqrt%7B25%7D%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bright%20on%20the%20circle%7D%7D%7Bd%20%3D%205%7D)
Answer:
18
Step-by-step explanation:
180-160 = 20 which equals the exterior angle
the sum of exterior angles is 360 so 360/20 = the number of sides as there is an exterior angle for every side
360/20 = 18
The equation of the line that is parallel to the line whose equation is 3x-2y=7 would be y = 3/2x + b, in which b can be any real number.
How are parallel straight lines related?
Parallel lines have the same slope since the slope is like a measure of steepness and since parallel lines are of the same steepness, thus, are of the same slope.
We have been given a parallel line with has equation
3x-2y=7
In order to solve this, the slope of the original line.
3x - 2y = 7
-2y = -3x + 7
y = 3/2x - 7/2
thus its slope is 3/2.
thus, the slope of the needed line is 3/2 too.
we know that any line that is parallel to that would have this slope.
So anything is written in the form:
y = 3/2x + b
The equation of the line that is parallel to the line whose equation is 3x-2y=7 would be y = 3/2x + b, in which b can be any real number.
Learn more about parallel lines here:
brainly.com/question/13857011
#SPJ4