Answer:
80,10,66
Step-by-step explanation:
Hope this helps :)
wheee
Compute each option
option A: simple interest
simple interest is easy
A=I+P
A=Final amount
I=interest
P=principal (amount initially put in)
and I=PRT
P=principal
R=rate in decimal
T=time in years
so given
P=15000
R=3.2% or 0.032 in deecimal form
T=10
A=I+P
A=PRT+P
A=(15000)(0.032)(10)+15000
A=4800+15000
A=19800
Simple interst pays $19,800 in 10 years
Option B: compound interest
for interest compounded yearly, the formula is

where A=final amount
P=principal
r=rate in decimal form
t=time in years
given
P=15000
r=4.1% or 0.041
t=10


use your calculator
A=22418.0872024
so after 10 years, she will have $22,418.09 in the compounded interest account
in 10 years, the investment in the simple interest account will be worth $19,800 and the investment in the compounded interest account will be worth$22,418.09
A: (x + 5i)^2
= (x + 5i)(x + 5i)
= (x)(x) + (x)(5i) + (5i)(x) + (5i)(5i)
= x^2 + 5ix + 5ix + 25i^2
= 25i^2 + 10ix + x^2
B: (x - 5i)^2
= (x + - 5i)(x + - 5i)
= (x)(x) + (x)(- 5i) + (- 5i)(x) + (- 5i)(- 5i)
= x^2 - 5ix - 5ix + 25i^2
= 25i^2 - 10ix + x^2
C: (x - 5i)(x + 5i)
= (x + - 5i)(x + 5i)
= (x)(x) + (x)(5i) + (- 5i)(x) + (- 5i)(5i)
= x^2 + 5ix - 5ix - 25i^2
= 25i^2 + x^2
D: (x + 10i)(x - 15i)
= (x + 10i)(x + - 15i)
= (x)(x) + (x)(- 15i) + (10i)(x) + (10i)(- 15i)
= x^2 - 15ix + 10ix - 150i^2
= - 150i^2 + 5ix + x^2
Hope that helps!!!
<h3>SOLUTION : </h3>
The radius of the circle is 4 inch and has an arc length of 5.8 inches . We know that if the central angle is 360° then the arc length is
. Similarly when angle is theta ,
Now substitute respective values , from the given data ,

This is our required answer!
Answer:1968ft^2
Step-by-step explanation:
Perimeter(p)=178feet
P=2L+2w
178=2L+2w
178=2(L+w)
L+w=178 ➗ 2
L+w=89.............(1)
W+7=L
L-w=7...................(11)
L+w=89... ..........(1)
L-w=7...................(11)
Subtract (11) from (1)
2w=89-7
2w=82
w=82 ➗ 2
w=41 width=41feet
Substitute w=41 in (11)
L-w=7
L-41=7
L=7+41
L=48feet
Area= length x width
Area=48 x 41
Area=1968ft^2