Answer:
y = x+6
Step-by-step explanation:
You can find an equation by using the 2-point form of the equation for a line:
y = (y2 -y1)/(x2 -x1)·(x -x1) +y1
Filling in the given values, we have ...
y = (9 -5)/(3 -(-1))·(x -(-1)) +5
y = (4/4)(x +1) +5 . . . . simplifying a bit
y = x +6
Answer:
What grade is this 12th?
Step-by-step explanation:
Answer:
B. Doubled
Step-by-step explanation:
The formula to find the circumference of the circle is

Now our problem says that the radius is doubled. Hence the new radius is 2r
Hence the new circumference will be



Hence our circumference gets doubled.
Answer:
not sure how to really answer this question.
Let c > 0. Then split the integral at t = c to write

By the FTC, the derivative is
![\displaystyle \frac{df}{dx} = \left(\frac1x + \sin\left(\frac1x\right)\right) \frac{d}{dx}\left[\frac1x\right] - (\ln(x) + \sin(\ln(x))) \frac{d}{dx}\left[\ln(x)\right] \\\\ = -\frac1{x^2} \left(\frac1x + \sin\left(\frac1x\right)\right) - \frac1x (\ln(x) + \sin(\ln(x))) \\\\ = -\frac1{x^3} - \frac{\sin\left(\frac1x\right)}{x^2} - \frac{\ln(x)}x - \frac{\sin(\ln(x))}x \\\\ = -\frac{1 + x\sin\left(\frac1x\right) + x^2\ln(x) + x^2 \sin(\ln(x))}{x^3}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bdf%7D%7Bdx%7D%20%3D%20%5Cleft%28%5Cfrac1x%20%2B%20%5Csin%5Cleft%28%5Cfrac1x%5Cright%29%5Cright%29%20%5Cfrac%7Bd%7D%7Bdx%7D%5Cleft%5B%5Cfrac1x%5Cright%5D%20-%20%28%5Cln%28x%29%20%2B%20%5Csin%28%5Cln%28x%29%29%29%20%5Cfrac%7Bd%7D%7Bdx%7D%5Cleft%5B%5Cln%28x%29%5Cright%5D%20%5C%5C%5C%5C%20%3D%20-%5Cfrac1%7Bx%5E2%7D%20%5Cleft%28%5Cfrac1x%20%2B%20%5Csin%5Cleft%28%5Cfrac1x%5Cright%29%5Cright%29%20-%20%5Cfrac1x%20%28%5Cln%28x%29%20%2B%20%5Csin%28%5Cln%28x%29%29%29%20%5C%5C%5C%5C%20%3D%20-%5Cfrac1%7Bx%5E3%7D%20-%20%5Cfrac%7B%5Csin%5Cleft%28%5Cfrac1x%5Cright%29%7D%7Bx%5E2%7D%20-%20%5Cfrac%7B%5Cln%28x%29%7Dx%20-%20%5Cfrac%7B%5Csin%28%5Cln%28x%29%29%7Dx%20%5C%5C%5C%5C%20%3D%20-%5Cfrac%7B1%20%2B%20x%5Csin%5Cleft%28%5Cfrac1x%5Cright%29%20%2B%20x%5E2%5Cln%28x%29%20%2B%20x%5E2%20%5Csin%28%5Cln%28x%29%29%7D%7Bx%5E3%7D)