1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
velikii [3]
3 years ago
6

Consider a refrigerator that consumes 320 W of electric power when it is running. If the refrigerator runs only one quarterof th

e time and the unit cost of electricity is $0.09/kWh, the electricity cost of this refrigerator per month (30 days) is(a) $3.56 (b) 55.18 (a 53.54 {0159.26 [6) $20.74
Engineering
1 answer:
ryzh [129]3 years ago
4 0

Answer:

$5.184

Explanation:

The cost can be calculated using the formula: Cost = Load \ factor \times Number \ of \ hours \ \\M_{month} = M_{units} \times W\\

Before using this, we require the following conversions:

<em>320 W → kW:</em>

\frac {320}{1000} = 0.32

<em>30 Days → Hours:</em>

30 \times 24 = 720

Using the above stated formula:

M_{month} = 0.09 \times 0.32 \times \frac{1}{4} \times 720 = 5.184

You might be interested in
Me ayudas plis noce ​
alekssr [168]

Answer:

Explanation:

7 0
2 years ago
A rigid 10-L vessel initially contains a mixture of liquid and vapor water at 100 °C, with a quality factor of 0.123. The mixtur
masya89 [10]

Answer:

Q_{in} = 46.454\,kJ

Explanation:

The vessel is modelled after the First Law of Thermodynamics. Let suppose the inexistence of mass interaction at boundary between vessel and surroundings, changes in potential and kinectic energy are negligible and vessel is a rigid recipient.

Q_{in} = U_{2} - U_{1}

Properties of water at initial and final state are:

State 1 - (Liquid-Vapor Mixture)

P = 101.42\,kPa

T = 100\,^{\textdegree}C

\nu = 0.2066\,\frac{m^{3}}{kg}

u = 675.761\,\frac{kJ}{kg}

x = 0.123

State 2 - (Liquid-Vapor Mixture)

P = 476.16\,kPa

T = 150\,^{\textdegree}C

\nu = 0.2066\,\frac{m^{3}}{kg}

u = 1643.545\,\frac{kJ}{kg}

x = 0.525

The mass stored in the vessel is:

m = \frac{V}{\nu}

m = \frac{10\times 10^{-3}\,m^{3}}{0.2066\,\frac{m^{3}}{kg} }

m = 0.048\,kg

The heat transfer require to the process is:

Q_{in} = m\cdot (u_{2}-u_{1})

Q_{in} = (0.048\,kg)\cdot (1643.545\,\frac{kJ}{kg} - 675.761\,\frac{kJ}{kg} )

Q_{in} = 46.454\,kJ

3 0
3 years ago
Pointssss 100 and brainliest :)
Delvig [45]

Answer:

thank you for the free point have a great rest of your day

7 0
3 years ago
Someone has suggested that the air-standard Otto cycle is more accurate if the two polytropic processes are replaced with isentr
omeli [17]

Answer:

q_net,in = 585.8 KJ/kg

q_net,out = 304 KJ/kg

n = 0.481

Explanation:

Given:

- The compression ratio r = 8

- The pressure at state 1, P_1 = 95 KPa

- The minimum temperature at state 1, T_L = 15 C

- The maximum temperature T_H = 900 C

- Poly tropic index n = 1.3

Find:

a) Determine the heat transferred to and rejected from this cycle

b) cycle’s thermal efficiency

Solution:

- For process 1-2, heat is rejected to sink throughout. The Amount of heat rejected q_1,2, can be computed by performing a Energy balance as follows:

                                   W_out - Q_out = Δ u_1,2

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                         c_v*(T_2 - T_L) = R*(T_2 - T_L)/n-1 - q_1,2

- Using polytropic relation we will convert T_2 = T_L*r^(n-1):

                  c_v*(T_L*r^(n-1) - T_L) = R*(T_1*r^(n-1) - T_L)/n-1 - q_1,2

- Hence, we have:

                             q_1,2 = T_L *(r^(n-1) - 1)* ( (R/n-1) - c_v)

- Plug in the values:

                             q_1,2 = 288 *(8^(1.3-1) - 1)* ( (0.287/1.3-1) - 0.718)

                            q_1,2= 60 KJ/kg

- For process 2-3, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                          Q_in = Δ u_2,3

                                         q_2,3 = u_3 - u_2

                                         q_2,3 = c_v*(T_H - T_2)  

- Again, using polytropic relation we will convert T_2 = T_L*r^(n-1):

                                         q_2,3 = c_v*(T_H - T_L*r^(n-1) )    

                                         q_2,3 = 0.718*(1173-288*8(1.3-1) )

                                        q_2,3 = 456 KJ/kg

- For process 3-4, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                     q_3,4 - w_in = Δ u_3,4

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                           c_v*(T_4 - T_H) = - R*(T_4 - T_H)/1-n +  q_3,4

- Using polytropic relation we will convert T_4 = T_H*r^(1-n):

                  c_v*(T_H*r^(1-n) - T_H) = -R*(T_H*r^(1-n) - T_H)/n-1 + q_3,4

- Hence, we have:

                             q_3,4 = T_H *(r^(1-n) - 1)* ( (R/1-n) + c_v)

- Plug in the values:

                             q_3,4 = 1173 *(8^(1-1.3) - 1)* ( (0.287/1-1.3) - 0.718)

                            q_3,4= 129.8 KJ/kg

- For process 4-1, heat is lost from the system. The Amount of heat rejected q_4,1, can be computed by performing a Energy balance as follows:

                                          Q_out = Δ u_4,1

                                         q_4,1 = u_4 - u_1

                                         q_4,1 = c_v*(T_4 - T_L)  

- Again, using polytropic relation we will convert T_4 = T_H*r^(1-n):

                                         q_4,1 = c_v*(T_H*r^(1-n) - T_L )    

                                         q_4,1 = 0.718*(1173*8^(1-1.3) - 288 )

                                        q_4,1 = 244 KJ/kg

- The net gain in heat can be determined from process q_3,4 & q_2,3:

                                         q_net,in = q_3,4+q_2,3

                                         q_net,in = 129.8+456

                                         q_net,in = 585.8 KJ/kg

- The net loss of heat can be determined from process q_1,2 & q_4,1:

                                         q_net,out = q_4,1+q_1,2

                                         q_net,out = 244+60

                                         q_net,out = 304 KJ/kg

- The thermal Efficiency of a Otto Cycle can be calculated:

                                         n = 1 - q_net,out / q_net,in

                                         n = 1 - 304/585.8

                                         n = 0.481

6 0
3 years ago
- Viscoelastic stress relaxation
My name is Ann [436]

Explanation:

The correct answers to the fill in the blanks would be;

1. Viscoelastic stress relaxation refers to scenarios for which the stress applied to a polymer must decay over time in order to maintain a constant strain. Otherwise, over time, the polymer chains will slip and slide past one another in response to a constant applied load and the strain will increase (in magnitude).

2. Viscoelastic creep refers to scenarios for which a polymer will permanently flow over time in response a constant applied stress.

The polymer whose properties have been mentioned above is commonly known as Kevlar.

It is mostly used in high-strength fabrics and its properties are because of several hydrogen bonds between polymer molecules.

5 0
3 years ago
Other questions:
  • Stainless steel ball bearings (rho = 8085 kg/m3 and cp = 0.480 kJ/kg·°C) having a diameter of 1.2 cm are to be quenched in water
    10·2 answers
  • Which of the following has nothing to do with insulating glass? Group of answer choices
    10·2 answers
  • The creation of designer drugs is outpacing the ability of society to enact laws to prohibit them. Many of these substances have
    11·1 answer
  • An insulated tank having a total volume of 0.6 m3 is divided into two compartments. Initially one compartment contains 0.4 m3 of
    8·1 answer
  • Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the given curves about the y
    7·1 answer
  • I need this asap thank you :) plzzzzz When the spring on a mousetrap car is fully unwound, the force acting on the car is _____.
    11·1 answer
  • g Clay sized particles in a river are likely to be transported as _______________________, whereas gravel sized particles are li
    5·1 answer
  • Hi all any one help me?? ​
    12·2 answers
  • I will mark brainliest.
    6·2 answers
  • The team needs to choose a primary view for the part drawing. Three team members make suggestions:
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!