Answer: hardness
Explanation:
Hardness is a measure of a material's ability to resist plastic deformation. In other words, it is a measure of how resistant material is to denting or scratching. Diamond, for example, is a very hard material. It is extremely difficult to dent or scratch a diamond. In contrast, it is very easy to scratch or dent most plastics.
Answer:
Depends on the battery and the current type.
Is it AC or DC?
Explanation:
Could you mark as brainiest.
I need it for my account
Thank you! :)
Answer:
![\mathbf{C_{10} = 137.611 \ kN}](https://tex.z-dn.net/?f=%5Cmathbf%7BC_%7B10%7D%20%3D%20137.611%20%5C%20kN%7D)
Explanation:
From the information given:
Life requirement = 40 kh = 40 ![40 \times 10^{3} \ h](https://tex.z-dn.net/?f=40%20%5Ctimes%2010%5E%7B3%7D%20%5C%20h)
Speed (N) = 520 rev/min
Reliability goal
= 0.9
Radial load
= 2600 lbf
To find C10 value by using the formula:
![C_{10}=F_D\times \pmatrix \dfrac{x_D}{x_o +(\theta-x_o) \bigg(In(\dfrac{1}{R_o}) \bigg)^{\dfrac{1}{b}}} \end {pmatrix} ^{^{^{\dfrac{1}{a}}](https://tex.z-dn.net/?f=C_%7B10%7D%3DF_D%5Ctimes%20%5Cpmatrix%20%5Cdfrac%7Bx_D%7D%7Bx_o%20%2B%28%5Ctheta-x_o%29%20%5Cbigg%28In%28%5Cdfrac%7B1%7D%7BR_o%7D%29%20%5Cbigg%29%5E%7B%5Cdfrac%7B1%7D%7Bb%7D%7D%7D%20%5Cend%20%7Bpmatrix%7D%20%5E%7B%5E%7B%5E%7B%5Cdfrac%7B1%7D%7Ba%7D%7D)
where;
![x_D = \text{bearing life in million revolution} \\ \\ x_D = \dfrac{60 \times L_h \times N}{10^6} \\ \\ x_D = \dfrac{60 \times 40 \times 10^3 \times 520}{10^6}\\ \\ x_D = 1248 \text{ million revolutions}](https://tex.z-dn.net/?f=x_D%20%3D%20%5Ctext%7Bbearing%20life%20in%20million%20revolution%7D%20%5C%5C%20%20%5C%5C%20x_D%20%3D%20%5Cdfrac%7B60%20%5Ctimes%20L_h%20%5Ctimes%20N%7D%7B10%5E6%7D%20%5C%5C%20%5C%5C%20x_D%20%3D%20%5Cdfrac%7B60%20%5Ctimes%2040%20%5Ctimes%2010%5E3%20%5Ctimes%20520%7D%7B10%5E6%7D%5C%5C%20%5C%5C%20x_D%20%3D%201248%20%5Ctext%7B%20million%20revolutions%7D)
![\text{The cyclindrical roller bearing (a)}= \dfrac{10}{3}](https://tex.z-dn.net/?f=%5Ctext%7BThe%20cyclindrical%20roller%20bearing%20%28a%29%7D%3D%20%5Cdfrac%7B10%7D%7B3%7D)
The Weibull parameters include:
![x_o = 0.02](https://tex.z-dn.net/?f=x_o%20%3D%200.02)
![(\theta - x_o) = 4.439](https://tex.z-dn.net/?f=%28%5Ctheta%20-%20x_o%29%20%3D%204.439)
![b= 1.483](https://tex.z-dn.net/?f=b%3D%201.483)
∴
Using the above formula:
![C_{10}=1.4\times 2600 \times \pmatrix \dfrac{1248}{0.02+(4.439) \bigg(In(\dfrac{1}{0.9}) \bigg)^{\dfrac{1}{1.483}}} \end {pmatrix} ^{^{^{\dfrac{1}{\dfrac{10}{3}}}](https://tex.z-dn.net/?f=C_%7B10%7D%3D1.4%5Ctimes%202600%20%5Ctimes%20%5Cpmatrix%20%5Cdfrac%7B1248%7D%7B0.02%2B%284.439%29%20%5Cbigg%28In%28%5Cdfrac%7B1%7D%7B0.9%7D%29%20%5Cbigg%29%5E%7B%5Cdfrac%7B1%7D%7B1.483%7D%7D%7D%20%5Cend%20%7Bpmatrix%7D%20%5E%7B%5E%7B%5E%7B%5Cdfrac%7B1%7D%7B%5Cdfrac%7B10%7D%7B3%7D%7D%7D)
![C_{10}=3640 \times \pmatrix \dfrac{1248}{0.02+(4.439) \bigg(In(\dfrac{1}{0.9}) \bigg)^{\dfrac{1}{1.483}}} \end {pmatrix} ^{^{^{\dfrac{3}{10}}](https://tex.z-dn.net/?f=C_%7B10%7D%3D3640%20%5Ctimes%20%5Cpmatrix%20%5Cdfrac%7B1248%7D%7B0.02%2B%284.439%29%20%5Cbigg%28In%28%5Cdfrac%7B1%7D%7B0.9%7D%29%20%5Cbigg%29%5E%7B%5Cdfrac%7B1%7D%7B1.483%7D%7D%7D%20%5Cend%20%7Bpmatrix%7D%20%5E%7B%5E%7B%5E%7B%5Cdfrac%7B3%7D%7B10%7D%7D)
![C_{10} = 3640 \times \bigg[\dfrac{1248}{0.9933481582}\bigg]^{\dfrac{3}{10}}](https://tex.z-dn.net/?f=C_%7B10%7D%20%3D%203640%20%5Ctimes%20%5Cbigg%5B%5Cdfrac%7B1248%7D%7B0.9933481582%7D%5Cbigg%5D%5E%7B%5Cdfrac%7B3%7D%7B10%7D%7D)
![C_{10} = 30962.449 \ lbf](https://tex.z-dn.net/?f=C_%7B10%7D%20%3D%2030962.449%20%5C%20lbf)
Recall that:
1 kN = 225 lbf
∴
![C_{10} = \dfrac{30962.449}{225}](https://tex.z-dn.net/?f=C_%7B10%7D%20%3D%20%5Cdfrac%7B30962.449%7D%7B225%7D)
![\mathbf{C_{10} = 137.611 \ kN}](https://tex.z-dn.net/?f=%5Cmathbf%7BC_%7B10%7D%20%3D%20137.611%20%5C%20kN%7D)
Answer:
The result might require 9 bits to store
Answer:
Follows are the solution to this question:
Explanation:
Calculating the area under the curve:
A = as
![=\frac{1}{2}(3 +6 \frac{m}{s^2})(100 \ m)+ \frac{1}{2}(6+4 \frac{m}{s^2})(100 m) \\\\=\frac{1}{2}(9 \frac{m}{s^2})(100 \ m)+ \frac{1}{2}(10\frac{m}{s^2})(100 m) \\\\=\frac{1}{2}(900 \frac{m^2}{s^2})+ \frac{1}{2}(1,000\frac{m^2}{s^2}) \\\\=(450 \frac{m^2}{s^2})+ (500\frac{m^2}{s^2}) \\\\= 950 \ \frac{m^2}{s^2}](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B2%7D%283%20%2B6%20%5Cfrac%7Bm%7D%7Bs%5E2%7D%29%28100%20%5C%20m%29%2B%20%5Cfrac%7B1%7D%7B2%7D%286%2B4%20%5Cfrac%7Bm%7D%7Bs%5E2%7D%29%28100%20m%29%20%5C%5C%5C%5C%3D%5Cfrac%7B1%7D%7B2%7D%289%20%5Cfrac%7Bm%7D%7Bs%5E2%7D%29%28100%20%5C%20m%29%2B%20%5Cfrac%7B1%7D%7B2%7D%2810%5Cfrac%7Bm%7D%7Bs%5E2%7D%29%28100%20m%29%20%5C%5C%5C%5C%3D%5Cfrac%7B1%7D%7B2%7D%28900%20%5Cfrac%7Bm%5E2%7D%7Bs%5E2%7D%29%2B%20%5Cfrac%7B1%7D%7B2%7D%281%2C000%5Cfrac%7Bm%5E2%7D%7Bs%5E2%7D%29%20%5C%5C%5C%5C%3D%28450%20%5Cfrac%7Bm%5E2%7D%7Bs%5E2%7D%29%2B%20%28500%5Cfrac%7Bm%5E2%7D%7Bs%5E2%7D%29%20%5C%5C%5C%5C%3D%20950%20%5C%20%5Cfrac%7Bm%5E2%7D%7Bs%5E2%7D)
Calculating the kinematics equation:
![\to v^2 = v^2_{o} + 2as\\\\](https://tex.z-dn.net/?f=%5Cto%20v%5E2%20%3D%20v%5E2_%7Bo%7D%20%2B%202as%5C%5C%5C%5C)
![=0+ \sqrt{2as}\\\\ = \sqrt{2(A)}\\\\= \sqrt{2(950 \frac{m^2}{s^2})}\\\\= 43.59 \frac{m}{s}](https://tex.z-dn.net/?f=%3D0%2B%20%5Csqrt%7B2as%7D%5C%5C%5C%5C%20%3D%20%5Csqrt%7B2%28A%29%7D%5C%5C%5C%5C%3D%20%5Csqrt%7B2%28950%20%5Cfrac%7Bm%5E2%7D%7Bs%5E2%7D%29%7D%5C%5C%5C%5C%3D%2043.59%20%5Cfrac%7Bm%7D%7Bs%7D)
Calculating the value of acceleration:
![\to a= \frac{dv}{dt}](https://tex.z-dn.net/?f=%5Cto%20a%3D%20%5Cfrac%7Bdv%7D%7Bdt%7D)
![=\frac{dv}{ds}(\frac{ds}{dt}) \\\\=v\frac{dv}{ds}\\\\\to \frac{dv}{ds}=\frac{a}{v}](https://tex.z-dn.net/?f=%3D%5Cfrac%7Bdv%7D%7Bds%7D%28%5Cfrac%7Bds%7D%7Bdt%7D%29%20%5C%5C%5C%5C%3Dv%5Cfrac%7Bdv%7D%7Bds%7D%5C%5C%5C%5C%5Cto%20%5Cfrac%7Bdv%7D%7Bds%7D%3D%5Cfrac%7Ba%7D%7Bv%7D)
![\to \frac{dv}{ds} =\frac{4 \frac{m}{s^2}}{43.59 \frac{m}{s}} \\\\](https://tex.z-dn.net/?f=%5Cto%20%5Cfrac%7Bdv%7D%7Bds%7D%20%3D%5Cfrac%7B4%20%5Cfrac%7Bm%7D%7Bs%5E2%7D%7D%7B43.59%20%5Cfrac%7Bm%7D%7Bs%7D%7D%20%5C%5C%5C%5C)
![=\frac{0.092}{s}](https://tex.z-dn.net/?f=%3D%5Cfrac%7B0.092%7D%7Bs%7D)