1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
REY [17]
3 years ago
10

The steel water pipe has an inner diameter of 12 in. and a wall thickness of 0.25 in. If the valve A is closed and the water pre

ssure is 300 psi, determine the longitudinal and hoop stress developed in the wall of the pipe at point B. Draw the state of stress on a volume element located on the wall.

Engineering
1 answer:
xenn [34]3 years ago
8 0

Find the below attachment

You might be interested in
Consider two Carnot heat engines operating in series. The first engine receives heat from the reservoir at 1400 K and rejects th
Aleksandr-060686 [28]

Answer:

The temperature T= 648.07k

Explanation:

T1=input temperature of the first heat engine =1400k

T=output temperature of the first heat engine and input temperature of the second heat engine= unknown

T3=output temperature of the second heat engine=300k

but carnot efficiency of heat engine =1 - \frac{Tl}{Th} \\

where Th =temperature at which the heat enters the engine

Tl is the  temperature of the environment

since both engines have the same thermal capacities <em>n_{th} </em> therefore n_{th} =n_{th1} =n_{th2}\\n_{th }=1-\frac{T1}{T}=1-\frac{T}{T3}\\ \\= 1-\frac{1400}{T}=1-\frac{T}{300}\\

We have now that

\frac{-1400}{T}+\frac{T}{300}=0\\

multiplying through by T

-1400 + \frac{T^{2} }{300}=0\\

multiplying through by 300

-420000+ T^{2} =0\\T^2 =420000\\\sqrt{T2}=\sqrt{420000}  \\T=648.07k

The temperature T= 648.07k

5 0
3 years ago
Find the time-domain sinusoid for the following phasors:_________
sattari [20]

<u>Answer</u>:

a.  r(t) = 6.40 cos (ωt + 38.66°) units

b.  r(t) = 6.40 cos (ωt - 38.66°) units

c.  r(t) = 6.40 cos (ωt - 38.66°) units

d.  r(t) = 6.40 cos (ωt + 38.66°) units

<u>Explanation</u>:

To find the time-domain sinusoid for a phasor, given as a + bj, we follow the following steps:

(i) Convert the phasor to polar form. The polar form is written as;

r∠Ф

Where;

r = magnitude of the phasor = \sqrt{a^2 + b^2}

Ф = direction = tan⁻¹ (\frac{b}{a})

(ii) Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid (r(t)) as follows:

r(t) = r cos (ωt + Φ)

Where;

ω = angular frequency of the sinusoid

Φ = phase angle of the sinusoid

(a) 5 + j4

<em>(i) convert to polar form</em>

r = \sqrt{5^2 + 4^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{4}{5})

Φ = tan⁻¹ (0.8)

Φ = 38.66°

5 + j4 = 6.40∠38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt + 38.66°)

(b) 5 - j4

<em>(i) convert to polar form</em>

r = \sqrt{5^2 + (-4)^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{-4}{5})

Φ = tan⁻¹ (-0.8)

Φ = -38.66°

5 - j4 = 6.40∠-38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt - 38.66°)

(c) -5 + j4

<em>(i) convert to polar form</em>

r = \sqrt{(-5)^2 + 4^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{4}{-5})

Φ = tan⁻¹ (-0.8)

Φ = -38.66°

-5 + j4 = 6.40∠-38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt - 38.66°)

(d) -5 - j4

<em>(i) convert to polar form</em>

r = \sqrt{(-5)^2 + (-4)^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{-4}{-5})

Φ = tan⁻¹ (0.8)

Φ = 38.66°

-5 - j4 = 6.40∠38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt + 38.66°)

3 0
3 years ago
A vertical pole consisting of a circular tube of outer diameter 127 mm and inner diameter 115 mm is loaded by a linearly varying
Anna [14]

Maximum shear stress in the pole is 0.

<u>Explanation:</u>

Given-

Outer diameter = 127 mm

Outer radius,r_{2} = 127/2 = 63.5 mm

Inner diameter = 115 mm

Inner radius, r_{1} = 115/2 = 57.5 mm

Force, q = 0

Maximum shear stress, τmax = ?

 τmax  = \frac{4q}{3\pi } (\frac{r2^2 + r2r1 + r1^2}{r2^4 - r1^4} )

If force, q is 0 then τmax is also equal to 0.

Therefore, maximum shear stress in the pole is 0.

3 0
4 years ago
CS3733: Homework/Practice 05 Suppose we would like to write a program called monitor which allows two other programs to communic
valina [46]

Answer:

#include<stdio.h>

#include<stdlib.h>

#include<unistd.h>

#include<sys/types.h>

#include<string.h>

#include<pthread.h>

//#include<sys/wait.h>

int main(int argc, char** argv)

{

int fd1[2];

int fd2[2];

int fd3[2];

int fd4[2];

char message[] = "abcd";

char input_str[100];

pid_t p,q;

if (pipe(fd1)==-1)

{

 fprintf(stderr, "Pipe Failed" );

 return 1;

}

if (pipe(fd2)==-1)

{

 fprintf(stderr, "Pipe Failed" );

 return 1;

}

if (pipe(fd3)==-1)

{

 fprintf(stderr, "Pipe Failed" );

 return 1;

}

if (pipe(fd4)==-1)

{

 fprintf(stderr, "Pipe Failed" );

 return 1;

}

p = fork();

if (p < 0)

{

 fprintf(stderr, "fork Failed" );

return 1;

}

// child process-1

else if (p == 0)

{

 close(fd1[0]);// Close reading end of first pipe

 char concat_str[100];

 printf("\n\tEnter meaaage:"):

 scanf("%s",concat_str);

 write(fd1[1], concat_str, strlen(concat_str)+1);

 // Concatenate a fixed string with it

 int k = strlen(concat_str);

 int i;

 for (i=0; i<strlen(fixed_str); i++)

 {

  concat_str[k++] = fixed_str[i];

 }

 concat_str[k] = '\0';//string ends with '\0'

 // Close both writting ends

 close(fd1[1]);

 wait(NULL);

//.......................................................................

 close(fd2[1]);

 read(fd2[0], concat_str, 100);

 if(strcmp(concat_str,"invalid")==0)

 {

 printf("\n\tmessage not send");

 }

 else

 {

  printf("\n\tmessage send to prog_2(child_2).");

 }

 close(fd2[0]);//close reading end of pipe 2

 exit(0);

}

else

{

 close(fd1[1]);//Close writting end of first pipe

 char concat_str[100];

 read(fd1[0], concal_str, strlen(concat_str)+1);

 close(fd1[0]);

 close(fd2[0]);//Close writing end of second pipe

 if(/*check if msg is valid or not*/)

 {

  //if not then

  write(fd2[1], "invalid",sizeof(concat_str));

  return 0;

 }

 else

 {

  //if yes then

  write(fd2[1], "valid",sizeof(concat_str));

  close(fd2[1]);

  q=fork();//create chile process 2

  if(q>0)

  {

   close(fd3[0]);/*close read head offd3[] */

   write(fd3[1],concat_str,sizeof(concat_str);//write message by monitor(main process) using fd3[1]

   close(fd3[1]);

   wait(NULL);//wait till child_process_2 send ACK

   //...........................................................

   close(fd4[1]);

   read(fd4[0],concat_str,100);

   close(fd4[0]);

   if(sctcmp(concat_str,"ack")==0)

   {

    printf("Messageof child process_1 is received by child process_2");

   }

   else

   {

    printf("Messageof child process_1 is not received by child process_2");

   }

  }

  else

  {

   if(p<0)

   {

    printf("Chiile_Procrss_2 not cheated");

   }

   else

   {

     

    close(fd3[1]);//Close writing end of first pipe

    char concat_str[100];

    read(fd3[0], concal_str, strlen(concat_str)+1);

    close(fd3[0]);

    close(fd4[0]);//Close writing end of second pipe

    write(fd4[1], "ack",sizeof(concat_str));

     

   }

  }

 }

 close(fd2[1]);

}

}

8 0
4 years ago
Ammonia contained in a piston-cylinder assembly, initially saturated vapor at 0o F, undergoes an isothermal process during which
Rudik [331]

ANSWERS:

-P_{2(a)} =15.6lbf/in^2\\-P_{2(b)} =30.146lbf/in^2\\ T_{2(a)} =0^oF\\T_{2(b)} =0^oF\\x_{2(b)} =49.87percent

Explanation:

Given:

Piston cylinder assembly which mean that the process is constant pressure process P=C.

<u>AMMONIA </u>

state(1)

saturated vapor x_{1} =1

The temperature T_{1} =0^0 F

Isothermal process  T=C

a)

-V_{2} =2V_{1} ( double)

b)

-V_{2} =.5V_{2} (reduced by half)

To find the final state by giving the quality in lbf/in we assume the friction is neglected and the system is in equilibrium.

state(1)

using PVT data for saturated ammonia

-P_{1} =30.416 lbf/in^2\\-v_{1} =v_{g} =9.11ft^3/lb

then the state exists in the supper heated region.

a) from standard data

-v_{1(a)} =2v_{1} =18.22ft^3/lb\\-T_{1} =0^oF

at\\P_{x} =14lbf/in^2\\-v_{x} =20.289 ft^3/kg

at\\P_{y} =16 lbf/in^2\\-v_{y} =17.701ft^3/kg

assume linear interpolation

\frac{P_{x}-P_{2(b)}  }{P_{x}- P_{y} } =\frac{v_{x}-v_{1(a)}  }{v_{x}-v_{y}  }

P_{1(b)}=P_{x} -(P_{x} -P_{y} )*\frac{v_{x}- v_{1(b)} }{v_{x}-v_{y}  }\\ \\P_{1(b)} =14-(14-16)*\frac{20.289-18.22}{20.289-17.701} =15.6lbf/in^2

b)

-v_{2(a)} =2v_{1} =4.555ft^3/lb\\v_{g}

from standard data

-v_{f} =0.02419ft^3/kg\\-v_{g} =9.11ft^3/kg\\v_{f}

then the state exist in the wet zone

-P_{s} =30.146lbf/in^2\\v_{2(a)} =v_{f} +x(v_{g} -v_{f} )

x=\frac{v_{2(a)-v_{f} } }{v_{g} -v_{f} } \\x=\frac{4.555-0.02419}{9.11-0.02419} =49.87%

3 0
3 years ago
Other questions:
  • The slope of a moment diagram is the load. a)-True b)-False
    8·1 answer
  • Water is the working fluid in a Rankine cycle. Superheated vapor enters the turbine at 8 MPa, 560°C and the turbine exit pressur
    13·1 answer
  • There are 22 gloves in a drawer: 5 pairs of red gloves, 4 pairs of yellow, and 2 pairs of green. You select the gloves in the da
    13·1 answer
  • A three-phase Y-connected 50-Hz two-pole synchronous machine has a stator with 2000 turns of wire per phase. What rotor flux wou
    11·1 answer
  • A demand factor of _____ percent applies to a multifamily dwelling with ten units if the optional calculation method is used.
    14·1 answer
  • The figure below appeared three heat treatments processes of steel (A, B and C),
    14·1 answer
  • What is 39483048^349374*3948048/3i4u4
    15·1 answer
  • How much energy in joule is added to a 12 g of sample of aluminum (c=0.897 J/g ◦C) to raise the temperature from 20 ◦C to 45 ◦C?
    14·1 answer
  • The Imager for Mars Pathfinder (IMP) is an imaging system. It has two camera channels. Each channel has color capability. This i
    7·1 answer
  • Which thematic group is involved in the transmission and generation of electrical power?
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!