Answer:
1.33
Explanation:
For an optical instrument, the magnification ratio of the apparent diameter of the image to that of the object.
Mathematically, from the given information;
Magnification
where;


The acceleration is 
Explanation:
We can solve the problem by applying Newton's second law of motion: in fact, the net force acting on an object is equal to the product between the mass of the object and its acceleration. Therefore we can write:

where:
is the resultant force acting on the object
m is its mass
a is its acceleration
In this problem, we have the following forces acting on the system:
(forward)
(backward)
So, Newton's second law can be rewritten as:

where:
m = 1050 kg is the mass of all the students
Solving the formula for a, we find the acceleration of the system:

Learn more about Newton's second law:
brainly.com/question/3820012
#LearnwithBrainly
I think the right answer for this question is : 138 because the boy is just 15 year old but he has resting heart rate of 70
Answer:
1.29 moles
0.753 moles
0.745 moles
Explanation:
PV=nRT
n=PV/RT
n=(1)(34.2)/(0.0821)(323.7)
n=1.29
n=PV/RT
n=(1)(22.4)=(0.0821)(362.15)
n=0.753
n=PV/RT
n=(1)(16.7)/(0.0821)(273.15)
n=0.745
In the ideal gas equation, T is measured in Kelvin.
Answer:
Case 1: <u>Pushing</u> Diagram 1
Leaning over and Pushing the heavy box from the floor, the push will be divided in to two parts, one is horizontal that can help the box move, and one is vertically downwards, which increases the downward force of the heavy object (an addition to the gravity) and thus increases friction, making it very hard to push. When you push at certain angle, you are exhibiting two forces as shown in diagram 1.
- Horizontal force acting along the plane.
- Vertical force downward perpendicular to the surface.
Case 2: <u>Pulling</u> Diagram 2
Pulling on a rope similar object at the same angle, the pull can be divided into two parts, one is horizontal that can help the box move, and one is vertically upwards, which decreases the downwards force of the box (a subtraction in the gravity) and thus decreases friction, making it very easy to pull. When you pull at a certain angle, you are exhibiting two forces as shown in diagram 2.
- Horizontal force acting along the plane.
- Vertical force upward perpendicular to the surface.
So, in the case of pushing, it adds an extra weight on the object, which results in difficulty to push that object at the same angle. In case of pulling, the upward perpendicular force, it tries to lift the object upward and divided the weight partially. Thus making it easier to move the object at same angle.