To do this, you got to square 256.
The square root of 256 is 16.
Therefore, there are 16 small squares on each edge of the mosaic.
Kinda proof:
o o o o O
o o o o O
o o o o O
o o o o O
o o o o O
25 squares. Square root is 5. 5 along each edge. My work shares same concept.
Extremely unnecessary proof:
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
There are 256 squares, and you can count 16 on each edge. this shows 16 times 16, or 16 squared, which is 256.
Answer:
17-d=5
Step-by-step explanation:
Hope this helps :)
Answer:
Yes, they are proportional.
Step-by-step explanation:
Using this from what I found helped me answer the question, and if you compare their ratios, they are both going to show that 75% each class have texted:
Proportional: When quantities have the same relative size. In other words they have the same ratio.
All you would have to do is compare the amount of students that texted(x) to the amount of students there are total in the class(y). When you compare them in a y:x format, it will all lead up to the results showing that 75% of both groups have texted.
Answer: v = -5/8
Step-by-step explanation: