Find the equation of the line normal to the curve of y=3cos1/3x, Where x=\pi
1 answer:
Answer:
![y = \frac{\sqrt{2}x}{3} - \frac{\sqrt{2}\pi}{3} + 1.5](https://tex.z-dn.net/?f=y%20%3D%20%5Cfrac%7B%5Csqrt%7B2%7Dx%7D%7B3%7D%20-%20%5Cfrac%7B%5Csqrt%7B2%7D%5Cpi%7D%7B3%7D%20%2B%201.5)
Step-by-step explanation:
The equation to the line normal to the curve has the following format:
![y - y(x_{0}) = m(x - x_{0})](https://tex.z-dn.net/?f=y%20-%20y%28x_%7B0%7D%29%20%3D%20m%28x%20-%20x_%7B0%7D%29)
In whicm m is the derivative of y at the point ![x_{0}](https://tex.z-dn.net/?f=x_%7B0%7D)
In this problem, we have that:
![x_{0} = \pi](https://tex.z-dn.net/?f=x_%7B0%7D%20%3D%20%5Cpi)
![y(x) = 3\cos{\frac{x}{3}}](https://tex.z-dn.net/?f=y%28x%29%20%3D%203%5Ccos%7B%5Cfrac%7Bx%7D%7B3%7D%7D)
![y(\pi) = 3\cos{\frac{\pi}{3}} = \frac{3}{2}](https://tex.z-dn.net/?f=y%28%5Cpi%29%20%3D%203%5Ccos%7B%5Cfrac%7B%5Cpi%7D%7B3%7D%7D%20%3D%20%5Cfrac%7B3%7D%7B2%7D)
The derivative of
is ![a\sin{ax}](https://tex.z-dn.net/?f=a%5Csin%7Bax%7D)
So
![y(x) = 3\cos{\frac{x}{3}}](https://tex.z-dn.net/?f=y%28x%29%20%3D%203%5Ccos%7B%5Cfrac%7Bx%7D%7B3%7D%7D)
![y'(x) = 3*\frac{1}{3}\sin{\frac{x}{3}} = \sin{\frac{x}{3}}](https://tex.z-dn.net/?f=y%27%28x%29%20%3D%203%2A%5Cfrac%7B1%7D%7B3%7D%5Csin%7B%5Cfrac%7Bx%7D%7B3%7D%7D%20%3D%20%5Csin%7B%5Cfrac%7Bx%7D%7B3%7D%7D)
![m = \sin{\frac{\pi}{3}} = \frac{\sqrt{2}}{3}](https://tex.z-dn.net/?f=m%20%3D%20%5Csin%7B%5Cfrac%7B%5Cpi%7D%7B3%7D%7D%20%3D%20%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B3%7D)
The equation of the line normal to the curve of y=3cos1/3x is:
![y - y(x_{0}) = m(x - x_{0})](https://tex.z-dn.net/?f=y%20-%20y%28x_%7B0%7D%29%20%3D%20m%28x%20-%20x_%7B0%7D%29)
![y - \frac{3}{2} = \frac{\sqrt{2}}{3}(x - \pi)](https://tex.z-dn.net/?f=y%20-%20%5Cfrac%7B3%7D%7B2%7D%20%3D%20%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B3%7D%28x%20-%20%5Cpi%29)
![y = \frac{\sqrt{2}}{3}(x - \pi) + \frac{3}{2}](https://tex.z-dn.net/?f=y%20%3D%20%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B3%7D%28x%20-%20%5Cpi%29%20%2B%20%20%5Cfrac%7B3%7D%7B2%7D)
![y = \frac{\sqrt{2}x}{3} - \frac{\sqrt{2}\pi}{3} + 1.5](https://tex.z-dn.net/?f=y%20%3D%20%5Cfrac%7B%5Csqrt%7B2%7Dx%7D%7B3%7D%20-%20%5Cfrac%7B%5Csqrt%7B2%7D%5Cpi%7D%7B3%7D%20%2B%201.5)
You might be interested in
Answer:
The Correct Answer are B and D
Step-by-step explanation:
6 would be correct answer
5.
First plug the value of x into the equation
![2(-2y-12)+y=9](https://tex.z-dn.net/?f=2%28-2y-12%29%2By%3D9)
then solve for y
![2(-2y)+2(-12)+y=9 \\ -4y+(-24)+y=9 \\ -4y-24+y=9 \\ -3y-24=9 \\ -3y=33 \\ \frac{-3y}{-3}= \frac{33}{-3} \\ y = -11](https://tex.z-dn.net/?f=2%28-2y%29%2B2%28-12%29%2By%3D9%20%5C%5C%20-4y%2B%28-24%29%2By%3D9%20%5C%5C%20-4y-24%2By%3D9%20%5C%5C%20-3y-24%3D9%20%5C%5C%20-3y%3D33%20%5C%5C%20%5Cfrac%7B-3y%7D%7B-3%7D%3D%20%5Cfrac%7B33%7D%7B-3%7D%20%5C%5C%20y%20%3D%20-11)
6. Do the same steps
Those should be odd integers if I’m wrong let Me know and I’ll fix it for you