A long carbon and hydrogen chain and a carboxyl group.
In images of fatty acids (the monomers of Lipids), it is depicted as a long carbon chain with hydrogen on the ends and connected to them as well, yet on the clear side is the carboxyl group.
Hope this helps!
The correct answer is 'If molecules are small enough, then they can pass through the semipermeable membrane because they can cross the semipermeable membrane from their small pores or openings'.
The semipermeable membrane is permeable to few molecules, and the smaller molecules pass through the molecules from small pores present in the semipermeable membrane. The size of the big molecules are large, so, they cannot cross through semipermeable membrane.
Now it is clear that genes are what carry our traits through generations and that genes are made of deoxyribonucleic acid (DNA). But genes themselves don't do the actual work. Rather, they serve as instruction books for making functional molecules such as ribonucleic acid (RNA) and proteins, which perform the chemical reactions in our bodies.Proteins do many other things, too. They provide the body's main building materials, forming the cell's architecture and structural components. But one thing proteins can't do is make copies of themselves. When a cell needs more proteins, it uses the manufacturing instructions coded in DNA.The DNA code of a gene—the sequence of its individual DNA building blocks, labeled A (adenine), T (thymine), C (cytosine) and G (guanine) and collectively called nucleotides— spells out the exact order of a protein's building blocks, amino acids.
Occasionally, there is a kind of typographical error in a gene's DNA sequence. This mistake— which can be a change, gap or duplication—is called a mutation.