Check the picture below, so, that'd be the square inscribed in the circle.
so... hmm the diagonals for the square are the diameter of the circle, and keep in mind that the radius of a circle is half the diameter, so let's find the diameter.
![\bf \textit{distance between 2 points}\\ \quad \\ \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) &({{ -2}}\quad ,&{{ 5}})\quad % (c,d) &({{ -8}}\quad ,&{{ -3}}) \end{array}\qquad % distance value d = \sqrt{({{ x_2}}-{{ x_1}})^2 + ({{ y_2}}-{{ y_1}})^2} \\\\\\ \stackrel{diameter}{d}=\sqrt{[-8-(-2)]^2+[-3-5]^2} \\\\\\ d=\sqrt{(-8+2)^2+(-3-5)^2}\implies d=\sqrt{(-6)^2+(-8)^2} \\\\\\ d=\sqrt{36+64}\implies d=\sqrt{100}\implies d=10](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bdistance%20between%202%20points%7D%5C%5C%20%5Cquad%20%5C%5C%0A%5Cbegin%7Barray%7D%7Blllll%7D%0A%26x_1%26y_1%26x_2%26y_2%5C%5C%0A%25%20%20%28a%2Cb%29%0A%26%28%7B%7B%20-2%7D%7D%5Cquad%20%2C%26%7B%7B%205%7D%7D%29%5Cquad%20%0A%25%20%20%28c%2Cd%29%0A%26%28%7B%7B%20-8%7D%7D%5Cquad%20%2C%26%7B%7B%20-3%7D%7D%29%0A%5Cend%7Barray%7D%5Cqquad%20%0A%25%20%20distance%20value%0Ad%20%3D%20%5Csqrt%7B%28%7B%7B%20x_2%7D%7D-%7B%7B%20x_1%7D%7D%29%5E2%20%2B%20%28%7B%7B%20y_2%7D%7D-%7B%7B%20y_1%7D%7D%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Cstackrel%7Bdiameter%7D%7Bd%7D%3D%5Csqrt%7B%5B-8-%28-2%29%5D%5E2%2B%5B-3-5%5D%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0Ad%3D%5Csqrt%7B%28-8%2B2%29%5E2%2B%28-3-5%29%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B%28-6%29%5E2%2B%28-8%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0Ad%3D%5Csqrt%7B36%2B64%7D%5Cimplies%20d%3D%5Csqrt%7B100%7D%5Cimplies%20d%3D10)
that means the radius r = 5.
now, what's the center? well, the Midpoint of the diagonals, is really the center of the circle, let's check,

so, now we know the center coordinates and the radius, let's plug them in,
V = πr ^2 h
V = π (3)^2 (5)
V = π (9) (5)
V = π 45
V = 141.3 in
141.3 divided by 8 = 17.7
Answer:
As per the question, we need to convert product of sum into sum of product,
Given:
(A' +B+C')(A'+C'+D)(B'+D'),
At first, we will solve to parenthesis,
= (A'+C'+BD) (B'+D')
As per the Rule, (A+B)(A+C) = A+BC, In our case if we assume X = A'+C', then,
(A' +B+C')(A'+C'+D) = (A'+C'+B)(A'+C'+D) = (A'+C'+BD)
Now,
= (A'+C'+BD) (B'+D') = A'B' + A'D' + C'B' +C'D' +BDB' +BDD"
As we know that AA' = 0, it mean
=A'B'+A'D'+C'B'+C'D'+D*0+B0
=A'B'+A'D'+C'B'+C'D' as B * 0 and D*0 = 0
Finally, minimum sum of product boolean expression is
A''B'+A'D'+C'B'+C'D'
=