Answer:
Online Ordering is better.
Step-by-step explanation:
So you now that you save 20% if you to physical store and you save $20 if you go to the online store.
Say you are spending 100 dollars at the store to make it easy. 20% of one hundred is $20 so that is the same amount of money.
Now let’s look at the taxes and shipping so at the physical store you have to pay taxes no matter what but online you only do it if you purchase is less than $75 and we have $80 ($100–$20=$80) so at the physical store you have some amount of Mandy that is more than $80 because of taxes but if you buy online it will be exactly $80.
Answer:
nose pero me entiende n verdad
I wonder if you mean to write
in place of
...
If you meant what you wrote, then we have


If you meant to write
(the cube root of 256), then we could go on to have
![\sqrt[3]{256}=\sqrt[3]{16^2}=\sqrt[3]{(4^2)^2}=\sqrt[3]{4^4}=\sqrt[3]{4^3\cdot4}=4\sqrt[3]4](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B256%7D%3D%5Csqrt%5B3%5D%7B16%5E2%7D%3D%5Csqrt%5B3%5D%7B%284%5E2%29%5E2%7D%3D%5Csqrt%5B3%5D%7B4%5E4%7D%3D%5Csqrt%5B3%5D%7B4%5E3%5Ccdot4%7D%3D4%5Csqrt%5B3%5D4)
Step-by-step explanation:
<em>giv</em><em>en</em><em> </em>
<em>
</em>
<em>in</em><em> </em><em>or</em><em>der</em><em> </em><em>to</em><em> </em><em>mak</em><em>e</em><em> </em><em>multipli</em><em>cation</em><em> </em><em>easi</em><em>er</em><em> </em><em>we</em><em> </em><em>ne</em><em>ed</em><em> </em><em>to</em><em> </em><em>cha</em><em>nge</em><em> </em><em>the</em><em> </em><em>1</em><em>.</em><em>5</em><em> </em><em>into</em><em> </em><em>a</em><em> </em><em>whol</em><em>e</em><em> </em><em>number</em><em> </em><em>form</em><em>.</em>
<em>thus</em>
<em>
</em>
<em>
</em>
<em>First</em><em> </em><em>law</em><em> </em><em>of</em><em> </em><em>indic</em><em>es</em><em> </em><em>appli</em><em>ed</em><em> </em><em>there</em>
<em>=</em><em>(</em><em>1</em><em>5</em><em>×</em><em>1</em><em>0</em><em>^</em><em>3</em><em>)</em><em>(</em><em>8</em><em>×</em><em>1</em><em>0</em><em>^</em><em>8</em><em>)</em>
<em>=</em><em>(</em><em>1</em><em>5</em><em>×</em><em>8</em><em>)</em><em>(</em><em>1</em><em>0</em><em>^</em><em>3</em><em>×</em><em>1</em><em>0</em><em>^</em><em>8</em><em>)</em>
<em>=</em><em>1</em><em>2</em><em>0</em><em>×</em><em>1</em><em>0</em><em>^</em><em>3</em><em>+</em><em>8</em><em> </em><em>(</em><em> </em><em>firs</em><em>t</em><em> </em><em>law</em><em> </em><em>of</em><em> </em><em>indic</em><em>es</em><em>,</em><em> </em><em>whi</em><em>ch</em><em> </em><em>sta</em><em>tes</em><em> </em><em>that</em><em> </em><em>,</em><em> </em><em>num</em><em>bers</em><em> </em><em>o</em><em>f</em><em> the</em><em> </em><em>sa</em><em>me</em><em> </em><em>base</em><em> </em><em>multi</em><em>plying</em><em> </em><em>each</em><em> </em><em>o</em><em>ther</em><em>,</em><em> take</em><em> </em><em>on</em><em>e</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>base</em><em> </em><em>and</em><em> </em><em>add</em><em> </em><em>the</em><em> </em><em>expon</em><em>ent</em><em>.</em><em> </em><em>and</em><em> </em><em>clearly</em><em> </em><em>both</em><em> </em><em>1</em><em>5</em><em> </em><em>and</em><em> </em><em>8</em><em> </em><em>are</em><em> </em><em>in</em><em> </em><em>base</em><em> </em><em>1</em><em>0</em>
<em>=</em><em>1</em><em>2</em><em>0</em><em>×</em><em>1</em><em>0</em><em>^</em><em>1</em><em>1</em>
<em>=</em><em>1</em><em>.</em><em>2</em><em>0</em><em>×</em><em>1</em><em>0</em><em>^</em><em>2</em><em> </em><em>×</em><em>1</em><em>0</em><em>^</em><em>1</em><em>1</em>
<em>=</em><em>1</em><em>.</em><em>2</em><em>0</em><em>×</em><em>1</em><em>0</em><em>^</em><em>1</em><em>1</em><em>+</em><em>2</em>
<em>=</em><em>1</em><em>.</em><em>2</em><em>0</em><em>×</em><em>1</em><em>0</em><em>^</em><em>1</em><em>3</em>
<em>so</em><em> </em><em>the</em><em> </em><em>a</em><em>nswer</em><em> </em><em>is</em><em> </em><em>alt</em><em> </em><em>B</em>
Answer:
23
Step-by-step explanation:
Here is the complete question
Find the volume of the parallelepiped with one vertex at the origin and adjacent vertices at (1, 0, -3), (1, 2, 4), and (5, 1, 0).
Solution
We find the volume of the parallelepiped by making a 3 × 3 column matrix whose columns are the corresponding coordinates of the vertices of the parallelepiped.
So, (1, 0, -3), (1, 2, 4) and (5, 1, 0)
![A = \left[\begin{array}{ccc}1&1&5\\0&2&1\\-3&4&0\end{array}\right]](https://tex.z-dn.net/?f=A%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%265%5C%5C0%262%261%5C%5C-3%264%260%5Cend%7Barray%7D%5Cright%5D)
The determinant of A is the volume of the parallelepiped. So,
detA = 1(2 × 0 - 4 × 1) - 1(0 × 0 - (-3) × 1) + 5(0 × 4 - (-3) × 2)
= 1(0 - 4) - 1(0 + 3) + 5(0 + 6)
= 1(-4) - 1(3) + 5(6)
= -4 - 3 + 30
= 23
So the volume of the parallelepiped is 23