Answer:
9:20
Step-by-step explanation:
Given:
Surface area of shape A = 9 cm²
Surface Area of shape B = 16 cm²
Ratio of volume of shape A to B = 27:125
Required:
Find the ratio of the height of shape A to the height of shape C.
Ratio of surface area (A:B)² = ratio of linear measures (A:B)
Thus,
(A:B)² = (A:B)
(A/B)² = (A/B)
![(\frac{A}{B})^2= (\frac{9}{16})](https://tex.z-dn.net/?f=%20%28%5Cfrac%7BA%7D%7BB%7D%29%5E2%3D%20%28%5Cfrac%7B9%7D%7B16%7D%29%20%20)
Take the square root of both sides:
![(\sqrt{\frac{A}{B}})^2 = (\sqrt{\frac{9}{16}})](https://tex.z-dn.net/?f=%20%28%5Csqrt%7B%5Cfrac%7BA%7D%7BB%7D%7D%29%5E2%20%3D%20%28%5Csqrt%7B%5Cfrac%7B9%7D%7B16%7D%7D%29%20)
![\frac{A}{B} = \frac{3}{4}](https://tex.z-dn.net/?f=%20%5Cfrac%7BA%7D%7BB%7D%20%3D%20%5Cfrac%7B3%7D%7B4%7D)
Ratio of volume of shape B to C = 27:125
Thus,
(B:C)³ = 27:125
![(\frac{B}{C})^3= (\frac{27}{125})](https://tex.z-dn.net/?f=%20%28%5Cfrac%7BB%7D%7BC%7D%29%5E3%3D%20%28%5Cfrac%7B27%7D%7B125%7D%29%20%20)
Take the cube root of both sides:
![(3\sqrt{\frac{B}{C}})^3 = (3\sqrt{\frac{27}{125}})](https://tex.z-dn.net/?f=%283%5Csqrt%7B%5Cfrac%7BB%7D%7BC%7D%7D%29%5E3%20%3D%20%283%5Csqrt%7B%5Cfrac%7B27%7D%7B125%7D%7D%29)
![\frac{B}{C} = \frac{3}{5}](https://tex.z-dn.net/?f=%20%5Cfrac%7BB%7D%7BC%7D%20%3D%20%5Cfrac%7B3%7D%7B5%7D)
Therefore, ratio of lengths A:B:C =
3:4:C
A:3:5
To make them equivalent, we have:
9:12:C
A:4:20
Therefore, the ratio of the height of shape A to the height of shape C =
9:20