Answer:
7/9, 28/36
Step-by-step explanation:
14/18
Divide the numerator and denominator of 14/18 by 2: 7/9
Multiply the numerator and denominator of 14/18 by 2: 28/36
Answer:
=20.5
Step-by-step explanation:
1. use the Pythagorean theorem: a^2+ b^2=c^2 (arms+legs squared=hypotenuse)
2. plug in the numbers to the equation:
14^2+15^2=c
225+196=c^2
421=C^2
the square root of 421 is 20.5 which is the hypotenuse of the triangle
Answer:
cos(θ)
Step-by-step explanation:
Para una función f(x), la derivada es el límite de
h
f(x+h)−f(x)
, ya que h va a 0, si ese límite existe.
dθ
d
(sin(θ))=(
h→0
lim
h
sin(θ+h)−sin(θ)
)
Usa la fórmula de suma para el seno.
h→0
lim
h
sin(h+θ)−sin(θ)
Simplifica sin(θ).
h→0
lim
h
sin(θ)(cos(h)−1)+cos(θ)sin(h)
Reescribe el límite.
(
h→0
lim
sin(θ))(
h→0
lim
h
cos(h)−1
)+(
h→0
lim
cos(θ))(
h→0
lim
h
sin(h)
)
Usa el hecho de que θ es una constante al calcular límites, ya que h va a 0.
sin(θ)(
h→0
lim
h
cos(h)−1
)+cos(θ)(
h→0
lim
h
sin(h)
)
El límite lim
θ→0
θ
sin(θ)
es 1.
sin(θ)(
h→0
lim
h
cos(h)−1
)+cos(θ)
Para calcular el límite lim
h→0
h
cos(h)−1
, primero multiplique el numerador y denominador por cos(h)+1.
(
h→0
lim
h
cos(h)−1
)=(
h→0
lim
h(cos(h)+1)
(cos(h)−1)(cos(h)+1)
)
Multiplica cos(h)+1 por cos(h)−1.
h→0
lim
h(cos(h)+1)
(cos(h))
2
−1
Usa la identidad pitagórica.
h→0
lim
−
h(cos(h)+1)
(sin(h))
2
Reescribe el límite.
(
h→0
lim
−
h
sin(h)
)(
h→0
lim
cos(h)+1
sin(h)
)
El límite lim
θ→0
θ
sin(θ)
es 1.
−(
h→0
lim
cos(h)+1
sin(h)
)
Usa el hecho de que
cos(h)+1
sin(h)
es un valor continuo en 0.
(
h→0
lim
cos(h)+1
sin(h)
)=0
Sustituye el valor 0 en la expresión sin(θ)(lim
h→0
h
cos(h)−1
)+cos(θ).
cos(θ)
1) Inequality
2) Equation
Step-by-step explanation:
We need to identify the correct description
1) 7x+9<25
The sign < is called greater than and is an inequality symbol
So, the given term is an Inequality
2) 2x-3=5x+12
This is an equation because we equal (=) sign in it.
Solving the equation we can find value of x.
So, the given term is an Equation
Keywords: Solving Equations
Learn more about Solving Equations at:
#learnwithBrainly
Answer:
83 cm
Step-by-step explanation:
Let the length of the rectangle be L cm and the width be W cm.
L= 2W +3 -----(1)
Perimeter of rectangle= 2(length) +2(width)
2L +2W= 246 -----(2)
Substitute (1) into (2):
2(2W +3) +2W= 246
Expand:
4W +6 +2W= 246
Simplify:
6W +6= 246
Divide both sides by 6:
W +1= 41
W= 41 -1
W= 40
∴ width of the rectangle is 40cm.
Substitute value of W into (1):
L= 2(40).+3
L= 80 +3
L= 83
Thus, the length of the rectangle is 83 cm.