Answer: the length of one edge of the square base of the second container is 6 inches.
Step-by-step explanation:
The formula for determining the volume of a rectangular container is expressed as
Volume = length × width × height
Considering the first container,
Length = 12 inches
Width = 8 inches
Height to which the water is filled is 6 inches.
Therefore, volume of water in the container is
12 × 8 × 6 = 576 inches³
Considering the second container,
Height of water = 16 inches
Let L represent the length of the square base. Then the area of the square base is L²
Volume of water would be 16L²
Since the water in the first container was poured into the second container, then
16L² = 576
L² = 576/16 = 36
L = √36
L = 6 inches
Answer:
the exact length of the midsegment of trapezoid JKLM =
i.e 6.708 units on the graph
Step-by-step explanation:
From the diagram attached below; we can see a graphical representation showing the mid-segment of the trapezoid JKLM. The mid-segment is located at the line parallel to the sides of the trapezoid. However; these mid-segments are X and Y found on the line JK and LM respectively from the graph.
Using the expression for midpoints between two points to determine the exact length of the mid-segment ; we have:







Thus; the exact length of the midsegment of trapezoid JKLM =
i.e 6.708 units on the graph
Answer:
s = 3
Step-by-step explanation:
The volume formula for a cube is V = s^3, where “s” is the edge length. Since we know the volume and need to find “s,” we just do the inverse operation for an exponent, which is a radical. The cubed root of 27 is 3, so there’s your answer! Hope this is helpful & accurate. Best wishes.
Answer:
70
Step-by-step explanation:
Take the absolute value of both numbers. In this case, -38 and 32. So 38 and 32.
Add: 38+32
70
I think I may be wrong