1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GuDViN [60]
3 years ago
11

Kieran subscribes to a text messaging service on his cell phone. His monthly bill for the service is given by the equation b = 0

.25t, where b is the bill amount and t is the number of texts. The constant of proportionality in terms of cost per text is . NextReset
Mathematics
2 answers:
Ksju [112]3 years ago
6 0

0.25 is the answer for the question

Lemur [1.5K]3 years ago
3 0
B=1.25 so i think im not so good with this but i try if its wrong nvr listen  to me
You might be interested in
Please help.. pleaseeee
Luba_88 [7]
False
true
false
false
7 0
3 years ago
Read 2 more answers
The graphs of the quadratic functions f(x) = 6 – 10x2 and g(x) = 8 – (x – 2)2 are provided below. Observe there are TWO lines si
natta225 [31]

Answer:

a) y = 7.74*x + 7.5

b)  y = 1.148*x + 6.036

Step-by-step explanation:

Given:

                                  f(x) = 6 - 10*x^2

                                  g(x) = 8 - (x-2)^2

Find:

(a) The line simultaneously tangent to both graphs having the LARGEST slope has equation

(b) The other line simultaneously tangent to both graphs has equation,

Solution:

- Find the derivatives of the two functions given:

                                f'(x) = -20*x

                                g'(x) = -2*(x-2)

- Since, the derivative of both function depends on the x coordinate. We will choose a point x_o which is common for both the functions f(x) and g(x). Point: ( x_o , g(x_o)) Hence,

                                g'(x_o) = -2*(x_o -2)

- Now compute the gradient of a line tangent to both graphs at point (x_o , g(x_o) ) on g(x) graph and point ( x , f(x) ) on function f(x):

                                m = (g(x_o) - f(x)) / (x_o - x)

                                m = (8 - (x_o-2)^2 - 6 + 10*x^2) / (x_o - x)

                                m = (8 - (x_o^2 - 4*x_o + 4) - 6 + 10*x^2)/(x_o - x)

                                m = ( 8 - x_o^2 + 4*x_o -4 -6 +10*x^2) /(x_o - x)

                                m = ( -2 - x_o^2 + 4*x_o + 10*x^2) /(x_o - x)

- Now the gradient of the line computed from a point on each graph m must be equal to the derivatives computed earlier for each function:

                                m = f'(x) = g'(x_o)

- We will develop the first expression:

                                m = f'(x)

                                ( -2 - x_o^2 + 4*x_o + 10*x^2) /(x_o - x) = -20*x

Eq 1.                          (-2 - x_o^2 + 4*x_o + 10*x^2) = -20*x*x_o + 20*x^2

And,

                              m = g'(x_o)

                              ( -2 - x_o^2 + 4*x_o + 10*x^2) /(x_o - x) = -20*x

                              -2 - x_o^2 + 4*x_o + 10*x^2 = -2(x_o - 2)(x_o - x)

Eq 2                       -2 - x_o^2 + 4*x_o+ 10*x^2 = -2(x_o^2 - x_o*(x + 2) + 2*x)

- Now subtract the two equations (Eq 1 - Eq 2):

                              -20*x*x_o + 20*x^2 + 2*x_o^2 - 2*x_o*(x + 2) + 4*x = 0

                              -22*x*x_o + 20*x^2 + 2*x_o^2 - 4*x_o + 4*x = 0

- Form factors:       20*x^2 - 20*x*x_o - 2*x*x_o + 2*x_o^2 - 4*x_o + 4*x = 0

                              20*x*(x - x_o) - 2*x_o*(x - x_o) + 4*(x - x_o) = 0

                               (x - x_o)(20*x - 2*x_o + 4) = 0  

                               x = x_o   ,     x_o = 10x + 2    

- For x_o = 10x + 2  ,

                               (g(10*x + 2) - f(x))/(10*x + 2 - x) = -20*x

                                (8 - 100*x^2 - 6 + 10*x^2)/(9*x + 2) = -20*x

                                (-90*x^2 + 2) = -180*x^2 - 40*x

                                90*x^2 + 40*x + 2 = 0  

- Solve the quadratic equation above:

                                 x = -0.0574, -0.387      

- Largest slope is at x = -0.387 where equation of line is:

                                  y - 4.502 = -20*(-0.387)*(x + 0.387)

                                  y = 7.74*x + 7.5          

- Other tangent line:

                                  y - 5.97 = 1.148*(x + 0.0574)

                                  y = 1.148*x + 6.036

6 0
3 years ago
Is it adjacent,vertical or neither
IgorLugansk [536]
I think its adjacent not for sure

3 0
3 years ago
R is the midpoint of OP and QR is perpendicular to OP in the diagram below
dezoksy [38]

Answer:

24 in

Step-by-step explanation

Using pythagorean theorem, since OP is 20 inches and has a midpoint. RP= 10 and OR=10. The hypotenuse is given as 26 so do 26^2=10^2+a. 676= 100+a^2, subtract 100 from both sides. square root of 576 is 24

7 0
3 years ago
5<br> Find x to the nearest tenth.<br> 18.7<br> 13<br> 19.3<br> NEXT QUESTION<br> © ASK FOR HELP
Iteru [2.4K]
Think it’s option 1.3
6 0
3 years ago
Other questions:
  • Please help me. Thank you so much.
    11·1 answer
  • The area of the base of a prism is 50mm2. The perimeter of the base is 30mm. The height of the prism is 7mm.
    14·1 answer
  • At the Reyers family reunion, McKenzie noticed that the number of people attending could be divided into three equal groups. She
    10·1 answer
  • The standard form is 1125<br> what is the exponential form
    10·1 answer
  • Orders arrive at a Web site according to a Poisson process with a mean of 11 per hour. Determine the following: a) Probability o
    14·1 answer
  • A bank offers an annual simple interest rate of 9% on home improvement
    12·1 answer
  • Which of the following is equivalent to (mn)3? (5 points)
    14·2 answers
  • Find the area of this whole trapezoid
    8·1 answer
  • Pls help I’ll give you 35 points
    7·2 answers
  • When you start your career, you decide to set aside $250 every month to deposit into an investment account. The investment firm
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!