Answer:
can zoom the picture in i cant see it clearly
Step-by-step explanation:
Answer:
(1) length AB = 21.0
(2) length BC = 45.0
Step-by-step explanation:
(1) To determine AB, apply Cosine rule;
![|AB|^2 = |AC|^2 + |BC|^2 \ - \ 2[|AC| \times |BC]cos \ C\\\\|AB|^2 = 13^2 + 29^2 \ - \ 2(13 \times 29) cos(41)\\\\|AB|^2 = 1010 - 569.05\\\\|AB|^2 = 440.95\\\\|AB|= \sqrt{ 440.95} \\\\|AB| = 21.0](https://tex.z-dn.net/?f=%7CAB%7C%5E2%20%3D%20%7CAC%7C%5E2%20%2B%20%7CBC%7C%5E2%20%5C%20-%20%5C%202%5B%7CAC%7C%20%5Ctimes%20%7CBC%5Dcos%20%5C%20C%5C%5C%5C%5C%7CAB%7C%5E2%20%3D%2013%5E2%20%2B%2029%5E2%20%5C%20-%20%5C%202%2813%20%5Ctimes%2029%29%20cos%2841%29%5C%5C%5C%5C%7CAB%7C%5E2%20%3D%201010%20-%20569.05%5C%5C%5C%5C%7CAB%7C%5E2%20%3D%20440.95%5C%5C%5C%5C%7CAB%7C%3D%20%5Csqrt%7B%20440.95%7D%20%5C%5C%5C%5C%7CAB%7C%20%3D%2021.0)
(2) To determine BC, also apply cosine rule;
![|BC|^2 = |AB|^2 + |AC|^2 \ - \ 2[|AB| \times |AC]cos \ A\\\\|BC|^2 = 30^2 + 21^2 \ - \ 2(30 \times 21) cos(123)\\\\|BC|^2 = 1341 - (-686.245)\\\\|BC|^2 = 1341 + 686.245\\\\ |BC| = 2027.245\\\\|BC|= \sqrt{ 2027.245} \\\\|BC| = 45.0](https://tex.z-dn.net/?f=%7CBC%7C%5E2%20%3D%20%7CAB%7C%5E2%20%2B%20%7CAC%7C%5E2%20%5C%20-%20%5C%202%5B%7CAB%7C%20%5Ctimes%20%7CAC%5Dcos%20%5C%20A%5C%5C%5C%5C%7CBC%7C%5E2%20%3D%2030%5E2%20%2B%2021%5E2%20%5C%20-%20%5C%202%2830%20%5Ctimes%2021%29%20cos%28123%29%5C%5C%5C%5C%7CBC%7C%5E2%20%3D%201341%20-%20%28-686.245%29%5C%5C%5C%5C%7CBC%7C%5E2%20%3D%201341%20%2B%20686.245%5C%5C%5C%5C%20%7CBC%7C%20%3D%202027.245%5C%5C%5C%5C%7CBC%7C%3D%20%5Csqrt%7B%202027.245%7D%20%5C%5C%5C%5C%7CBC%7C%20%3D%2045.0)
The answer is -7. Adding two negative make a negative then u add like u regularly would
Answer:
21, 144, 12
Step-by-step explanation:
Given that a sample of 30 distance scores measured in yards has a mean of 7, a variance of 16, and a standard deviation of 4.
Let X be the distance in yard.
i.e. each entry of x is multiplied by 3.
New mean variance std devition would be
E(3x) = 
Var (3x) = 
Std dev (3x) = 
Thus we find mean and std devition get multiplied by 3, variance is multiplied by 9
<span>For a function "f" defined by an expression with variable theta, the implied domain of "f" is the set of all real numbers variable theta can take such that the expression defining the function is real. !</span>