![\bf [cot(\theta )+csc(\theta )]^2=\cfrac{1+cos(\theta )}{1-cos(\theta )} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{doing the left-hand side}}{[cot(\theta )+csc(\theta )]^2}\implies cot^2(\theta )+2cot(\theta )csc(\theta )+csc^2(\theta ) \\\\\\ \cfrac{cos^2(\theta )}{sin^2(\theta )}+2\cdot \cfrac{cos(\theta )}{sin(\theta )}\cdot \cfrac{1}{sin(\theta )}+\cfrac{1}{sin^2(\theta )}\implies \cfrac{cos^2(\theta )}{sin^2(\theta )}+\cfrac{2cos(\theta )}{sin^2(\theta )}+\cfrac{1}{sin^2(\theta )}](https://tex.z-dn.net/?f=%5Cbf%20%5Bcot%28%5Ctheta%20%29%2Bcsc%28%5Ctheta%20%29%5D%5E2%3D%5Ccfrac%7B1%2Bcos%28%5Ctheta%20%29%7D%7B1-cos%28%5Ctheta%20%29%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bdoing%20the%20left-hand%20side%7D%7D%7B%5Bcot%28%5Ctheta%20%29%2Bcsc%28%5Ctheta%20%29%5D%5E2%7D%5Cimplies%20cot%5E2%28%5Ctheta%20%29%2B2cot%28%5Ctheta%20%29csc%28%5Ctheta%20%29%2Bcsc%5E2%28%5Ctheta%20%29%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7Bcos%5E2%28%5Ctheta%20%29%7D%7Bsin%5E2%28%5Ctheta%20%29%7D%2B2%5Ccdot%20%5Ccfrac%7Bcos%28%5Ctheta%20%29%7D%7Bsin%28%5Ctheta%20%29%7D%5Ccdot%20%5Ccfrac%7B1%7D%7Bsin%28%5Ctheta%20%29%7D%2B%5Ccfrac%7B1%7D%7Bsin%5E2%28%5Ctheta%20%29%7D%5Cimplies%20%5Ccfrac%7Bcos%5E2%28%5Ctheta%20%29%7D%7Bsin%5E2%28%5Ctheta%20%29%7D%2B%5Ccfrac%7B2cos%28%5Ctheta%20%29%7D%7Bsin%5E2%28%5Ctheta%20%29%7D%2B%5Ccfrac%7B1%7D%7Bsin%5E2%28%5Ctheta%20%29%7D)
![\bf \cfrac{\stackrel{\textit{perfect square trinomial}}{cos^2(\theta )+2cos(\theta )+1}}{sin^2(\theta )}\implies \boxed{\cfrac{[cos(\theta )+1]^2}{sin^2(\theta )}} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{doing the right-hand-side}}{\cfrac{1+cos(\theta )}{1-cos(\theta )}}\implies \stackrel{\textit{multiplying by the denominator's conjugate}}{\cfrac{1+cos(\theta )}{1-cos(\theta )}\cdot \cfrac{1+cos(\theta )}{1+cos(\theta )}}](https://tex.z-dn.net/?f=%5Cbf%20%5Ccfrac%7B%5Cstackrel%7B%5Ctextit%7Bperfect%20square%20trinomial%7D%7D%7Bcos%5E2%28%5Ctheta%20%29%2B2cos%28%5Ctheta%20%29%2B1%7D%7D%7Bsin%5E2%28%5Ctheta%20%29%7D%5Cimplies%20%5Cboxed%7B%5Ccfrac%7B%5Bcos%28%5Ctheta%20%29%2B1%5D%5E2%7D%7Bsin%5E2%28%5Ctheta%20%29%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bdoing%20the%20right-hand-side%7D%7D%7B%5Ccfrac%7B1%2Bcos%28%5Ctheta%20%29%7D%7B1-cos%28%5Ctheta%20%29%7D%7D%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bmultiplying%20by%20the%20denominator%27s%20conjugate%7D%7D%7B%5Ccfrac%7B1%2Bcos%28%5Ctheta%20%29%7D%7B1-cos%28%5Ctheta%20%29%7D%5Ccdot%20%5Ccfrac%7B1%2Bcos%28%5Ctheta%20%29%7D%7B1%2Bcos%28%5Ctheta%20%29%7D%7D)
![\bf \cfrac{[1+cos(\theta )]^2}{\underset{\textit{difference of squares}}{[1-cos(\theta )][1+cos(\theta )]}}\implies \cfrac{[cos(\theta )+1]^2}{1^2-cos^2(\theta )} \\\\\\ \cfrac{[cos(\theta )+1]^2}{1-cos^2(\theta )}\implies \boxed{\cfrac{[cos(\theta )+1]^2}{sin^2(\theta )}}](https://tex.z-dn.net/?f=%5Cbf%20%5Ccfrac%7B%5B1%2Bcos%28%5Ctheta%20%29%5D%5E2%7D%7B%5Cunderset%7B%5Ctextit%7Bdifference%20of%20squares%7D%7D%7B%5B1-cos%28%5Ctheta%20%29%5D%5B1%2Bcos%28%5Ctheta%20%29%5D%7D%7D%5Cimplies%20%5Ccfrac%7B%5Bcos%28%5Ctheta%20%29%2B1%5D%5E2%7D%7B1%5E2-cos%5E2%28%5Ctheta%20%29%7D%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B%5Bcos%28%5Ctheta%20%29%2B1%5D%5E2%7D%7B1-cos%5E2%28%5Ctheta%20%29%7D%5Cimplies%20%5Cboxed%7B%5Ccfrac%7B%5Bcos%28%5Ctheta%20%29%2B1%5D%5E2%7D%7Bsin%5E2%28%5Ctheta%20%29%7D%7D)
recall that sin²(θ) + cos²(θ) = 1, thus sin²(θ) = 1 - cos²(θ).
Use the distributive property.
This states that: a(b+c)= ab+ac
So,
-6*a= -6a and -6*8= -48
-6a+-48
This is the most you can simplify this problem.
I hope this helps!
~kaikers
1) 25.7
2) 16.6
3) 38.88
4)12.29
5)39.60
6) 11.39
7) 31.96
8) 12.35
To mention all the answers are approximate because most of the values were not exact, so give feedbacks for more answers.
Answer:
Step-by-step explanation:
5x -x + 3x =30, first you combine like terms 5x + 3x-x=30
8x-x =30
8-1=7
7x=30
Answer:
Explore - ??? (What are you suppose to put for that (Add comment))
Plan - First week - 53 Second week - 62
Solve - 53 + 62 = 115
Examine - (Use a graph to see the rise?)
Step-by-step explanation: