1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
telo118 [61]
2 years ago
7

A 63°. b27°. c 17°. d None of the choices are correct.

Mathematics
1 answer:
trapecia [35]2 years ago
6 0

Answer:

We know that angle 2 is 63. We also know that 2 and 3 are vertical pairs.

Therefor, they are congruent with one another.

Angle 3 is 63.

You might be interested in
Unit 3 parallel and perpendicular lines homework 4 parallel line proofs
Alex17521 [72]

Answer:

1) c ║ d by consecutive interior angles theorem

2) m∠3 + m∠6 = 180° by transitive property

3) ∠2 ≅ ∠5 by definition of congruency

4) t ║ v                                    {}                   Corresponding angle theorem

5) ∠14 and ∠11  are supplementary         {}  Definition of supplementary angles

6) ∠8 and ∠9  are supplementary    {}        Consecutive  interior angles theorem

Step-by-step explanation:

1) Statement                                {}                                     Reason

m∠4 + m∠7 = 180°                                 {}   Given

m∠4 ≅ m∠6                                {}              Vertically opposite angles

m∠4 = m∠6                               {}                Definition of congruency

m∠6 + m∠7 = 180°                                {}    Transitive property

m∠6 and m∠7 are supplementary     {}     Definition of supplementary angles

∴ c ║ d                               {}                       Consecutive interior angles theorem

2) Statement                                {}                                     Reason

m∠3 = m∠8                                 {}           Given

m∠8 + m∠6 = 180°                {}                 Sum of angles on a straight line

∴ m∠3 + m∠6 = 180°               {}               Transitive property

3) Statement                                {}                                     Reason

p ║ q                                 {}                    Given

∠1 ≅ ∠5                               {}                  Given

∠1 = ∠5                               {}                   Definition of congruency

∠2 ≅ ∠1                               {}                  Alternate interior angles theorem

∠2 = ∠1                               {}                   Definition of congruency

∠2 = ∠5                                  {}               Transitive property

∠2 ≅ ∠5                                  {}              Definition of congruency.

4) Statement                                {}                                     Reason

∠1 ≅ ∠5                                  {}                Given

∠3 ≅ ∠4                               {}                  Given

∠1 = ∠5                               {}                   Definition of congruency

∠3 = ∠4                               {}                  Definition of congruency

∠5 ≅ ∠4                               {}                 Vertically opposite angles

∠5 = ∠4                               {}                  Definition of congruency

∠5 = ∠3                                  {}               Transitive property

∠1 = ∠3                                  {}                Transitive property

∠1 ≅ ∠3                                  {}                Definition of congruency.

t ║ v                                    {}                   Corresponding angle theorem

5) Statement                                {}                                     Reason

∠5 ≅ ∠16                                  {}              Given

∠2 ≅ ∠4                               {}                  Given

∠5 = ∠16                               {}                  Definition of congruency

∠2 = ∠4                               {}                   Definition of congruency

EF ║ GH                               {}                  Corresponding angle theorem

∠14 ≅ ∠16                               {}                Corresponding angles

∠14 = ∠16                               {}                 Definition of congruency

∠5 = ∠14                                  {}               Transitive property

∠5 + ∠11 = 180°                {}                       Sum of angles on a straight line

∠14 + ∠11 = 180°                                {}      Transitive property

∠14 and ∠11  are supplementary         {}  Definition of supplementary angles  

6) Statement                                {}                                     Reason

l ║ m                                 {}                      Given

∠4 ≅ ∠7                               {}                  Given

∠4 = ∠7                               {}                   Definition of congruency

∠2 ≅ ∠7                               {}                  Alternate angles

∠2 = ∠7                               {}                   Definition of congruency

∠2 = ∠4                                  {}               Transitive property

∠2 ≅ ∠4                               {}                  Definition of congruency

∠2 and ∠4 are corresponding angles   {} Definition

DA ║ EB                               {}                  Corresponding angle theorem

∠8 and ∠9  are consecutive  interior angles    {} Definition

∠8 and ∠9  are supplementary    {}        Consecutive  interior angles theorem.

6 0
3 years ago
Help me i need this for a review
stira [4]

Answer:

26

Step-by-step explanation:

Examples:

1 x 13 = 13

3 x 13 = 39

Second blank:

2 x 13 = 26

8 0
2 years ago
Is 0.45545455545… a rational or irrational number? Explain two reasons for your classification.
Artist 52 [7]
Irrational because you it’s irra
7 0
3 years ago
Simplify.
Mekhanik [1.2K]
6a - (b - (3a - (2b + c + 4a - (a + 2b - c))))
6a - (b - (3a - (2b + c + 4a - a - 2b + c)))
6a - (b - (3a - (2b - 2b + 4a - a + c + c)))
6a - (b - (3a - (3a + 2c)))
6a - (b - (3a - 3a - 3c))
6a - (b - 3a + 3a + 3c)
6a - (b + 3c)
6a - b - 3c

x³ + x² - 25x - 25
x²(x) + x²(1) - 25(x) - 25(1)
x²(x + 1) - 25(x + 1)
(x² - 25)(x + 1)
(x² - 5x + 5x - 25)(x + 1)
(x(x) - x(5) + 5(x) - 5(5))(x + 1)
(x(x - 5) + 5(x - 5))(x + 1)
(x + 5)(x - 5)(x + 1)

36x² + 60x + 25
36x² + 30x + 30x + 25
6x(6x) + 6x(5) + 5(6x) + 5(5)
6x(6x + 5) + 5(6x + 5)
(6x + 5)(6x + 5)
(6x + 5)²
8 0
3 years ago
Read 2 more answers
If kevin makes c toys in m minutes, how many toys can he make per hour
mina [271]

Answer:

\frac{60c}{m}

Step-by-step explanation:

We can use the unity rule to solve this problem.

Number of toys made in m minutes = c

Number of toys made in 1 minute = \frac{c}{m}

Number of toys made in 60 minutes = \frac{c}{m} \times 60 = \frac{60c}{m}

Since 60 minutes = 1 hours, we can write:

Number of toys made in 1 hour = \frac{60c}{m}

Therefore, we can say that Kevin makes \frac{60c}{m} toys per an hour.

7 0
3 years ago
Other questions:
  • Help meee i need the X and what the angles are
    6·1 answer
  • Is it possible to divide numbers in any order without affecting the result?
    14·2 answers
  • Write an equation in point-slope form of the line that passes through the point (9, 0) and has a slope of m=−3
    15·1 answer
  • 24/52 simplify fraction
    9·1 answer
  • Which real-world story is represented by the addition problem (–2 1/2) + (–3 1/4) = –5 3/4?
    10·1 answer
  • What is 5.8 × 10^6 mg/s in grams per minute?
    13·1 answer
  • After converting the equation 5x + 2y = 10 to slope-intercept form. What would be the slope and the y-intercept? a) m = -2/5 and
    10·1 answer
  • I'm sorry for asking so many math questions, I just need alot of help​
    10·1 answer
  • <img src="https://tex.z-dn.net/?f=%20%5Clarge%20%5Ctt%20%5C%3A%20%7B%20x%20%7D%5E%7B%202%20%7D%20%2B%20%7B%20%5Cleft%28%20y-%20%
    9·2 answers
  • A teacher gave a test to a class in which 10% of the students are juniors and 90% are seniors. The average score on the test was
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!