The perimeter of the parallelogram whose base measure is
and whose oblique side is
is ![\boxed{10\sqrt[3]{{54}}{x^2}{\text{ cm}}}.](https://tex.z-dn.net/?f=%5Cboxed%7B10%5Csqrt%5B3%5D%7B%7B54%7D%7D%7Bx%5E2%7D%7B%5Ctext%7B%20cm%7D%7D%7D.)
Further explanation:
The perimeter of the parallelogram can be expressed as follows,
![\boxed{{\text{Perimeter}} = 2 \times \left( {x + y} \right)}](https://tex.z-dn.net/?f=%5Cboxed%7B%7B%5Ctext%7BPerimeter%7D%7D%20%3D%202%20%5Ctimes%20%5Cleft%28%20%7Bx%20%2B%20y%7D%20%5Cright%29%7D)
Given:
The base measure of the parallelogram is ![2\sqrt[3]{{54}}{x^2}{\text{ cm}}.](https://tex.z-dn.net/?f=2%5Csqrt%5B3%5D%7B%7B54%7D%7D%7Bx%5E2%7D%7B%5Ctext%7B%20cm%7D%7D.)
The oblique measure of the parallelogram is ![3\sqrt[3]{{54}}{x^2}{\text{ cm}}.](https://tex.z-dn.net/?f=3%5Csqrt%5B3%5D%7B%7B54%7D%7D%7Bx%5E2%7D%7B%5Ctext%7B%20cm%7D%7D.)
Explanation:
Consider the base measure of the parallelogram be “x”.
Consider the oblique side of the parallelogram as “y”.
The value of ![x = 2\sqrt[3]{{54}}{x^2}{\text{ cm}}.](https://tex.z-dn.net/?f=x%20%3D%202%5Csqrt%5B3%5D%7B%7B54%7D%7D%7Bx%5E2%7D%7B%5Ctext%7B%20cm%7D%7D.)
The value of ![y = 3\sqrt[3]{{54}}{x^2}{\text{ cm}}.](https://tex.z-dn.net/?f=y%20%3D%203%5Csqrt%5B3%5D%7B%7B54%7D%7D%7Bx%5E2%7D%7B%5Ctext%7B%20cm%7D%7D.)
The perimeter of the parallelogram can be obtained as follows,
![\begin{aligned}{\text{Perimeter}} &= 2x + 2y\\&= 2\left( {x + y} \right)\\&= 2\left( {2\sqrt[3]{{54}} + 3\sqrt[3]{{54}}} \right)\\&= 2\left( {5\sqrt[3]{{54}}} \right)\\&= 10\sqrt[3]{{54}}\\\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%7B%5Ctext%7BPerimeter%7D%7D%20%26%3D%202x%20%2B%202y%5C%5C%26%3D%202%5Cleft%28%20%7Bx%20%2B%20y%7D%20%5Cright%29%5C%5C%26%3D%202%5Cleft%28%20%7B2%5Csqrt%5B3%5D%7B%7B54%7D%7D%20%2B%203%5Csqrt%5B3%5D%7B%7B54%7D%7D%7D%20%5Cright%29%5C%5C%26%3D%202%5Cleft%28%20%7B5%5Csqrt%5B3%5D%7B%7B54%7D%7D%7D%20%5Cright%29%5C%5C%26%3D%2010%5Csqrt%5B3%5D%7B%7B54%7D%7D%5C%5C%5Cend%7Baligned%7D)
The perimeter of the parallelogram whose base measure is
and whose oblique side is ![3\sqrt[3]{{54}}{x^2}{\text{ cm}} \:{\text{is} \:\boxed{10\sqrt[3]{{54}}{x^2}{\text{ cm}}}.](https://tex.z-dn.net/?f=3%5Csqrt%5B3%5D%7B%7B54%7D%7D%7Bx%5E2%7D%7B%5Ctext%7B%20cm%7D%7D%20%5C%3A%7B%5Ctext%7Bis%7D%20%5C%3A%5Cboxed%7B10%5Csqrt%5B3%5D%7B%7B54%7D%7D%7Bx%5E2%7D%7B%5Ctext%7B%20cm%7D%7D%7D.)
Learn more:
1. Learn more about inverse of the functionhttps://brainly.com/question/1632445.
2. Learn more about equation of circle brainly.com/question/1506955.
3. Learn more about range and domain of the function brainly.com/question/3412497
Answer details:
Grade: High School
Subject: Mathematics
Chapter:
Keywords: Area, perimeter, total, parallelogram, base measure, oblique side measure, total perimeter.