If there are 236 dragons which you sorted into boxes of 10 crayons each, you have 6 crayons left over.
Answer:
Step-by-step explanation:
Hello!
The variable of interest is the readings on thermometers. This variable is normally distributed with mean μ= 0 degrees C and standard deviation σ= 1.00 degrees C.
The objective is to find the readings that are in the top 3.3% of the distribution and the lowest 3.3% of the distribution.
Symbolically:
The lower value P(X≤a)=0.033
Top value P(X≥b)=0.033
(see attachment)
Lower value:
The accumulated probability until "a" is 0.03, since the variable has a normal distribution, to reach the value of temperature that has the lowest 3.3%, you have to work under the standard normal distribution.
First we look the Z value corresponding to 0.033 of probability:
Z= -1.838
Now you reverste the standardization using the formula Z= (a-μ)/δ
a= (Z*δ)+μ
a= (-1.838*1)+0
a= -1.838
Top value:
P(X≥b)=0.033
This value has 0.033 of the distribution above it then 1 - 0.033= 0.967
is below it.
You can rewrite the expression as:
P(X≤b)=0.967
Now you have to look the value of Z that corresponds to 0.967 of accumulated probability:
b= (Z*δ)+μ
b= (1.838*1)+0
b= 1.838
The cutoff values that separates rejected thermometers from the others are -1.838 and 1.838 degrees C.
I hope it helps!
We can find that the formula is:

We are told that the cannonball reaches its maximum height at t = 4.5 seconds. To find the maximum height, let's just plug this into the formula:

The height is 324 feet. We're done!
Answer:
63.5
Step-by-step explanation:
The volume of the mineral = increase in volume of the water whuich is 16 - 8 = 8mls.
Therefore the mineral's density = 9.6 / 8
= 1.2 g/ ml answer