Answer:

Step-by-step explanation:
- A plane is oriented in a Cartesian coordinate system such that it makes an angle of ( π / 3 ) with the positive x - axis.
- A force ( F ) is directed along the y-axis as a vector < 0 , - 4 >
- We are to determine the the components of force ( F ) parallel and normal to the defined plane.
- We will denote two unit vectors: (
) parallel to plane and (
) orthogonal to the defined plane. We will define the two unit vectors in ( x - y ) plane as follows:
- The unit vector (
) parallel to the defined plane makes an angle of ( 30° ) with the positive y-axis and an angle of ( π / 3 = 60° ) with the x-axis. We will find the projection of the vector onto the x and y axes as follows:
= < cos ( 60° ) , cos ( 30° ) >

- Similarly, the unit vector (
) orthogonal to plane makes an angle of ( π / 3 ) with the positive x - axis and angle of ( π / 6 ) with the y-axis in negative direction. We will find the projection of the vector onto the x and y axes as follows:

- To find the projection of force ( F ) along and normal to the plane we will apply the dot product formulation:
- The Force vector parallel to the plane (
) would be:
![F_p = u_p(F . u_p)\\\\F_p = < \frac{1}{2} , \frac{\sqrt{3} }{2} > [ < 0 , - 4 > . < \frac{1}{2} , \frac{\sqrt{3} }{2} > ]\\\\F_p = < \frac{1}{2} , \frac{\sqrt{3} }{2} > [ -2\sqrt{3} ]\\\\F_p = < -\sqrt{3} , -3 >\\](https://tex.z-dn.net/?f=F_p%20%3D%20u_p%28F%20.%20u_p%29%5C%5C%5C%5CF_p%20%3D%20%3C%20%5Cfrac%7B1%7D%7B2%7D%20%2C%20%5Cfrac%7B%5Csqrt%7B3%7D%20%7D%7B2%7D%20%3E%20%5B%20%20%3C%200%20%2C%20-%204%20%3E%20.%20%3C%20%5Cfrac%7B1%7D%7B2%7D%20%2C%20%5Cfrac%7B%5Csqrt%7B3%7D%20%7D%7B2%7D%20%3E%20%5D%5C%5C%5C%5CF_p%20%3D%20%3C%20%5Cfrac%7B1%7D%7B2%7D%20%2C%20%5Cfrac%7B%5Csqrt%7B3%7D%20%7D%7B2%7D%20%3E%20%5B%20-2%5Csqrt%7B3%7D%20%20%5D%5C%5C%5C%5CF_p%20%3D%20%3C%20-%5Csqrt%7B3%7D%20%20%2C%20-3%20%3E%5C%5C)
- Similarly, to find the projection of force (
) normal to the plane we again employ the dot product formulation with normal unit vector (
) as follows:
![F_o = u_o ( F . u_o )\\\\F_o = < \frac{\sqrt{3} }{2} , - \frac{1}{2} > [ < 0 , - 4 > . < \frac{\sqrt{3} }{2} , - \frac{1}{2} > ] \\\\F_o = < \frac{\sqrt{3} }{2} , - \frac{1}{2} > [ 2 ] \\\\F_o = < \sqrt{3} , - 1 >](https://tex.z-dn.net/?f=F_o%20%3D%20u_o%20%28%20F%20.%20u_o%20%29%5C%5C%5C%5CF_o%20%3D%20%3C%20%5Cfrac%7B%5Csqrt%7B3%7D%20%7D%7B2%7D%20%2C%20-%20%5Cfrac%7B1%7D%7B2%7D%20%3E%20%5B%20%3C%200%20%2C%20-%204%20%3E%20.%20%3C%20%5Cfrac%7B%5Csqrt%7B3%7D%20%7D%7B2%7D%20%2C%20-%20%5Cfrac%7B1%7D%7B2%7D%20%3E%20%5D%20%5C%5C%5C%5CF_o%20%3D%20%3C%20%5Cfrac%7B%5Csqrt%7B3%7D%20%7D%7B2%7D%20%2C%20-%20%5Cfrac%7B1%7D%7B2%7D%20%3E%20%5B%202%20%5D%20%5C%5C%5C%5CF_o%20%3D%20%3C%20%5Csqrt%7B3%7D%20%2C%20-%201%20%3E)
- To prove that the projected forces (
) and (
) are correct we will apply the vector summation of the two orthogonal vector which must equal to the original vector < 0 , - 4 >
.. proven