Answer:
2.5π units^3
Step-by-step explanation:
Solution:-
- We will evaluate the solid formed by a function defined as an elliptical paraboloid as follows:-

- To sketch the elliptical paraboloid we need to know the two things first is the intersection point on the z-axis and the orientation of the paraboloid ( upward / downward cup ).
- To determine the intersection point on the z-axis. We will substitute the following x = y = 0 into the given function. We get:

- The intersection point of surface is z = 4. To determine the orientation of the paraboloid we see the linear term in the equation. The independent coordinates ( x^2 and y^2 ) are non-linear while ( z ) is linear. Hence, the paraboloid is directed along the z-axis.
- To determine the cup upward or downwards we will look at the signs of both non-linear terms ( x^2 and y^2 ). Both non-linear terms are accompanied by the negative sign ( - ). Hence, the surface is cup downwards. The sketch is shown in the attachment.
- The boundary conditions are expressed in the form of a cylinder and a plane expressed as:
- To cylinder is basically an extension of the circle that lies in the ( x - y ) plane out to the missing coordinate direction. Hence, the circle ( x^2 + y^2 = 1 ) of radius = 1 unit is extended along the z - axis ( coordinate missing in the equation ).
- The cylinder bounds the paraboloid in the x-y plane and the plane z = 0 and the intersection coordinate z = 4 of the paraboloid bounds the required solid in the z-direction. ( See the complete sketch in the attachment )
- To determine the volume of solid defined by the elliptical paraboloid bounded by a cylinder and plane we will employ the use of tripple integrals.
- We will first integrate the solid in 3-dimension along the z-direction. With limits: ( z = 0 ,
). Then we will integrate the projection of the solid on the x-y plane bounded by a circle ( cylinder ) along the y-direction. With limits: (
,
). Finally evaluate along the x-direction represented by a 1-dimensional line with end points ( -1 , 1 ).
- We set up our integral as follows:

- Integrate with respect to ( dz ) with limits: ( z = 0 ,
):
![V_s = \int\int [ {4 - x^2 - 4y^2} ] \, dy.dx](https://tex.z-dn.net/?f=V_s%20%3D%20%5Cint%5Cint%20%5B%20%7B4%20-%20x%5E2%20-%204y%5E2%7D%20%5D%20%5C%2C%20dy.dx)
- Integrate with respect to ( dy ) with limits: (
,
)
![V_s = \int [ {4y - x^2.y - \frac{4}{3} y^3} ] \, | .dx\\\\V_s = \int [ {8\sqrt{( 1 - x^2 )} - 2x^2*\sqrt{( 1 - x^2 )} - \frac{8}{3} ( 1 - x^2 )^\frac{3}{2} } ] . dx](https://tex.z-dn.net/?f=V_s%20%3D%20%5Cint%20%5B%20%7B4y%20-%20x%5E2.y%20-%20%5Cfrac%7B4%7D%7B3%7D%20y%5E3%7D%20%5D%20%5C%2C%20%7C%20.dx%5C%5C%5C%5CV_s%20%3D%20%5Cint%20%5B%20%7B8%5Csqrt%7B%28%201%20-%20x%5E2%20%29%7D%20%20-%202x%5E2%2A%5Csqrt%7B%28%201%20-%20x%5E2%20%29%7D%20-%20%5Cfrac%7B8%7D%7B3%7D%20%28%201%20-%20x%5E2%20%29%5E%5Cfrac%7B3%7D%7B2%7D%20%7D%20%5D%20.%20dx)
- Integrate with respect to ( dx ) with limits: ( -1 , 1 )
![V_s = [ 4. ( arcsin ( x ) + x\sqrt{1 - x^2} ) - \frac{arcsin ( x ) - 2x ( 1 -x^2 )^\frac{3}{2} + x\sqrt{1 - x^2} }{2} - \frac{ 3*arcsin ( x ) + 2x ( 1 -x^2 )^\frac{3}{2} + 3x\sqrt{1 - x^2} }{3} ] | \limits^1_-_1\\\\V_s = [ \frac{5}{2} *arcsin ( x ) + \frac{5}{3}*x ( 1 -x^2 )^\frac{3}{2} + \frac{5}{2} *x\sqrt{1 - x^2} ) ] | \limits^1_-_1\\\\V_s = [ \frac{5\pi }{2} + 0 + 0 ] \\\\V_s = \frac{5\pi }{2}](https://tex.z-dn.net/?f=V_s%20%3D%20%20%5B%204.%20%28%20arcsin%20%28%20x%20%29%20%2B%20x%5Csqrt%7B1%20-%20x%5E2%7D%20%29%20-%20%5Cfrac%7Barcsin%20%28%20x%20%29%20-%202x%20%28%201%20-x%5E2%20%29%5E%5Cfrac%7B3%7D%7B2%7D%20%2B%20x%5Csqrt%7B1%20-%20x%5E2%7D%20%20%7D%7B2%7D%20%20-%20%5Cfrac%7B%203%2Aarcsin%20%28%20x%20%29%20%2B%202x%20%28%201%20-x%5E2%20%29%5E%5Cfrac%7B3%7D%7B2%7D%20%2B%203x%5Csqrt%7B1%20-%20x%5E2%7D%20%20%7D%7B3%7D%20%5D%20%7C%20%5Climits%5E1_-_1%5C%5C%5C%5CV_s%20%3D%20%20%5B%20%5Cfrac%7B5%7D%7B2%7D%20%2Aarcsin%20%28%20x%20%29%20%2B%20%5Cfrac%7B5%7D%7B3%7D%2Ax%20%28%201%20-x%5E2%20%29%5E%5Cfrac%7B3%7D%7B2%7D%20%2B%20%5Cfrac%7B5%7D%7B2%7D%20%2Ax%5Csqrt%7B1%20-%20x%5E2%7D%20%29%20%5D%20%7C%20%5Climits%5E1_-_1%5C%5C%5C%5CV_s%20%3D%20%20%5B%20%5Cfrac%7B5%5Cpi%20%7D%7B2%7D%20%20%2B%200%20%2B%200%20%5D%20%5C%5C%5C%5CV_s%20%3D%20%5Cfrac%7B5%5Cpi%20%7D%7B2%7D)
Answer: The volume of the solid bounded by the curves is ( 5π/2 ) units^3.