1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex17521 [72]
4 years ago
5

Something x (-2) = 70

Mathematics
1 answer:
bija089 [108]4 years ago
7 0

Answer:

The answer is x = -35

You might be interested in
Find the distance of ST given, S ;-2,4) and T (4,1)
Angelina_Jolie [31]
You have to use the distance formula which is:

Distance = √(x2 - x1)^2 + (y2 - y1)^2

Using the coordinates given.

D = √(4 - (-2)^2 + (1 - 4)^2

D = √(6)^2 + (-3)^2

D = √36 + 9

D = √45

D = √9 × 5

D = 3√5
8 0
3 years ago
These cones are similar. Find the volume<br>of the smaller cone. Round to the<br>nearest tenth.<br>​
sattari [20]

Answer:

<h2>29.30cm^3</h2>

Step-by-step explanation:

If the two cone are similar then the heights are the same

let us find the height of the bigger cone

volume of cone= \frac{1}{3} \pi r^2h

For the bigger cone

r= 3cm

v= 66cm^3

66=\frac{1}{3}*3.142*3^2*h\\ 66=\frac{28.278}{3} *h\\h*28.278=198\\h=\frac{198}{28.278} =7cm

For the smaller cone

r=2cm

v=?

h=7cm

v=\frac{1}{3}*3.142*2^2*7\\\v=\frac{87.976}{3} \\\\\v=29.30cm^3

7 0
3 years ago
A pyramid has a square base. The base edge is one-half of the height of the pyramid. If the base edge is 6 units, what is the vo
Flura [38]

Answer:

144 cubic units

4 0
2 years ago
The length of a rectangular garden is 20 feet and the width is 15 feet. What is the ratio of length to width?
8090 [49]

Answer:

4:3 because 20 divided by 5 is 4 and 15 divided by 5 is 3.

7 0
3 years ago
Need help please its Calculus. Ill give the 5 stars as well.
algol13

Answer:

\displaystyle y = 2e^\bigg{\frac{x^3}{3}} + 1

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Order of Operations
  • Equality Properties

<u>Algebra I</u>

  • Functions
  • Function Notation
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}

<u>Algebra II</u>

  • Natural logarithms ln and Euler's number e

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Slope Fields

  • Separation of Variables
  • Solving Differentials

Integrals

  • Antiderivatives

Integration Constant C

Integration Rule [Reverse Power Rule]:                                                                   \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Addition/Subtraction]:                                                           \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

U-Substitution

Logarithmic Integration:                                                                                            \displaystyle \int {\frac{1}{u}} \, dx = ln|u| + C

Step-by-step explanation:

*Note:  

When solving differential equations in slope fields, disregard the integration constant C for variable y.

<u />

<u>Step 1: Define</u>

\displaystyle \frac{dy}{dx} = x^2(y - 1)

\displaystyle f(0) = 3

<u>Step 2: Rewrite</u>

<em>Separation of Variables. Get differential equation to a form where we can integrate both sides and rewrite Leibniz Notation.</em>

  1. [Separation of Variables] Rewrite Leibniz Notation:                                      \displaystyle dy = x^2(y - 1) \ dx
  2. [Separation of Variables] Isolate <em>y</em>'s together:                                               \displaystyle \frac{1}{y - 1} \ dy = x^2 \ dx

<u>Step 3: Find General Solution Pt. 1</u>

  1. [Differential] Integrate both sides:                                                                   \displaystyle \int {\frac{1}{y - 1}} \, dy = \int {x^2} \, dx
  2. [dx Integral] Integrate [Integration Rule - Reverse Power Rule]:                   \displaystyle \int {\frac{1}{y - 1}} \, dy = \frac{x^3}{3} + C

<u>Step 4: Find General Solution Pt. 2</u>

<em>Identify variables for u-substitution for dy.</em>

  1. Set:                                                                                                                    \displaystyle u = y - 1
  2. Differentiate [Basic Power Rule]:                                                                     \displaystyle du = dy

<u>Step 5: Find General Solution Pt. 3</u>

  1. [dy Integral] U-Substitution:                                                                             \displaystyle \int {\frac{1}{u}} \, du = \frac{x^3}{3} + C
  2. [dy Integral] Integrate [Logarithmic Integration]:                                            \displaystyle ln|u| = \frac{x^3}{3} + C
  3. [Equality Property] e both sides:                                                                     \displaystyle e^\bigg{ln|u|} = e^\bigg{\frac{x^3}{3} + C}
  4. Simplify:                                                                                                             \displaystyle |u| = Ce^\bigg{\frac{x^3}{3}}
  5. Rewrite:                                                                                                             \displaystyle u = \pm Ce^\bigg{\frac{x^3}{3}}
  6. Back-Substitute:                                                                                               \displaystyle y - 1 = \pm Ce^\bigg{\frac{x^3}{3}}
  7. [Equality Property] Isolate <em>y</em>:                                                                            \displaystyle y = \pm Ce^\bigg{\frac{x^3}{3}} + 1

General Form:  \displaystyle y = \pm Ce^\bigg{\frac{x^3}{3}} + 1

<u>Step 6: Find Particular Solution</u>

  1. Substitute in function values [General Form]:                                                \displaystyle 3 = \pm Ce^\bigg{\frac{0^3}{3}} + 1
  2. Simplify:                                                                                                             \displaystyle 3 = \pm C + 1
  3. [Equality Property] Isolate <em>C</em>:                                                                           \displaystyle 2 = \pm C
  4. Rewrite:                                                                                                             \displaystyle C = 2
  5. Substitute in <em>C</em> [General Form]:                                                                       \displaystyle y = 2e^\bigg{\frac{x^3}{3}} + 1

∴ our particular solution is  \displaystyle y = 2e^\bigg{\frac{x^3}{3}} + 1.

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentials and Slope Fields

Book: College Calculus 10e  

6 0
3 years ago
Other questions:
  • Charles will babysit for up to 4 hours and charges $7 per hour. Write a function in function notation for this situation.
    11·2 answers
  • Solve for x. Round your answer to the nearest hundredth. 15.56x − 200 &lt; 758.92
    12·1 answer
  • Question 9 (2 points)
    13·1 answer
  • I really need help!
    15·2 answers
  • What is the midpoint if the coordinates are (7,-4) and (3,2)
    10·1 answer
  • What is the quotient if the dividend is 739 and the divisor is 5
    10·1 answer
  • Which graph shows the solution to the system of linear inequalities? y &gt; Two-thirdsx + 3 y ≤ Negative one-thirdx + 2
    14·2 answers
  • For the polynomial x^3-4x^2-17x+60, x-3 is one of the factors
    8·1 answer
  • At the fast food restaurant, an order of fries costs $0.96 and a drink costs $0.90. How
    15·2 answers
  • Which of the following is true of the data set represented by the box plot max at 35
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!