Answer: 37.5%
Step-by-step explanation: 1/8 is 12.5% and if you multiply 12.5 by 3 you get 37.5
The last answer is correct x^5/6 + 2x^7/3
Answer:
should be 66.4
Step-by-step explanation:
<u>triangular prism:</u>
Using the formulas
AB=s(s﹣a)(s﹣b)(s﹣c)
V=ABh
s=a+b+c
2
Solving forV
V=1
4h﹣a4+2(ab)2+2(ac)2﹣b4+2(bc)2﹣c4=1
4·3·﹣24+2·(2·2)2+2·(2·2)2﹣24+2·(2·2)2﹣24≈5.19615
5.2 · 2 = 10.4
<u>Rectangular prism:</u>
<u>V=whl=2·2·14=56</u>
<u />
<u>10.4+56=66.4</u>
Answer:

Step-by-step explanation:
Given the limit of a function expressed as
, to evaluate the following steps must be carried out.
Step 1: substitute x = 0 into the function

Step 2: Apply L'Hôpital's rule, by differentiating the numerator and denominator of the function
![= \lim_{ x\to \ 0} \dfrac{\frac{d}{dx}[ sin(x)-tan(x)]}{\frac{d}{dx} (x^3)}\\= \lim_{ x\to \ 0} \dfrac{cos(x)-sec^2(x)}{3x^2}\\](https://tex.z-dn.net/?f=%3D%20%5Clim_%7B%20x%5Cto%20%5C%200%7D%20%5Cdfrac%7B%5Cfrac%7Bd%7D%7Bdx%7D%5B%20sin%28x%29-tan%28x%29%5D%7D%7B%5Cfrac%7Bd%7D%7Bdx%7D%20%28x%5E3%29%7D%5C%5C%3D%20%5Clim_%7B%20x%5Cto%20%5C%200%7D%20%5Cdfrac%7Bcos%28x%29-sec%5E2%28x%29%7D%7B3x%5E2%7D%5C%5C)
Step 3: substitute x = 0 into the resulting function

Step 4: Apply L'Hôpital's rule, by differentiating the numerator and denominator of the resulting function in step 2
![= \lim_{ x\to \ 0} \dfrac{\frac{d}{dx}[ cos(x)-sec^2(x)]}{\frac{d}{dx} (3x^2)}\\= \lim_{ x\to \ 0} \dfrac{-sin(x)-2sec^2(x)tan(x)}{6x}\\](https://tex.z-dn.net/?f=%3D%20%5Clim_%7B%20x%5Cto%20%5C%200%7D%20%5Cdfrac%7B%5Cfrac%7Bd%7D%7Bdx%7D%5B%20cos%28x%29-sec%5E2%28x%29%5D%7D%7B%5Cfrac%7Bd%7D%7Bdx%7D%20%283x%5E2%29%7D%5C%5C%3D%20%5Clim_%7B%20x%5Cto%20%5C%200%7D%20%5Cdfrac%7B-sin%28x%29-2sec%5E2%28x%29tan%28x%29%7D%7B6x%7D%5C%5C)

Step 6: Apply L'Hôpital's rule, by differentiating the numerator and denominator of the resulting function in step 4
![= \lim_{ x\to \ 0} \dfrac{\frac{d}{dx}[ -sin(x)-2sec^2(x)tan(x)]}{\frac{d}{dx} (6x)}\\= \lim_{ x\to \ 0} \dfrac{[ -cos(x)-2(sec^2(x)sec^2(x)+2sec^2(x)tan(x)tan(x)]}{6}\\\\= \lim_{ x\to \ 0} \dfrac{[ -cos(x)-2(sec^4(x)+2sec^2(x)tan^2(x)]}{6}\\](https://tex.z-dn.net/?f=%3D%20%5Clim_%7B%20x%5Cto%20%5C%200%7D%20%5Cdfrac%7B%5Cfrac%7Bd%7D%7Bdx%7D%5B%20-sin%28x%29-2sec%5E2%28x%29tan%28x%29%5D%7D%7B%5Cfrac%7Bd%7D%7Bdx%7D%20%286x%29%7D%5C%5C%3D%20%5Clim_%7B%20x%5Cto%20%5C%200%7D%20%5Cdfrac%7B%5B%20-cos%28x%29-2%28sec%5E2%28x%29sec%5E2%28x%29%2B2sec%5E2%28x%29tan%28x%29tan%28x%29%5D%7D%7B6%7D%5C%5C%5C%5C%3D%20%5Clim_%7B%20x%5Cto%20%5C%200%7D%20%5Cdfrac%7B%5B%20-cos%28x%29-2%28sec%5E4%28x%29%2B2sec%5E2%28x%29tan%5E2%28x%29%5D%7D%7B6%7D%5C%5C)
Step 7: substitute x = 0 into the resulting function in step 6
![= \dfrac{[ -cos(0)-2(sec^4(0)+2sec^2(0)tan^2(0)]}{6}\\\\= \dfrac{-1-2(0)}{6} \\= \dfrac{-1}{6}](https://tex.z-dn.net/?f=%3D%20%20%5Cdfrac%7B%5B%20-cos%280%29-2%28sec%5E4%280%29%2B2sec%5E2%280%29tan%5E2%280%29%5D%7D%7B6%7D%5C%5C%5C%5C%3D%20%5Cdfrac%7B-1-2%280%29%7D%7B6%7D%20%5C%5C%3D%20%5Cdfrac%7B-1%7D%7B6%7D)
<em>Hence the limit of the function </em>
.