Answer:
C
Step-by-step explanation:
Given
+ ![\left[\begin{array}{ccc}3&1\\-1&2\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%261%5C%5C-1%262%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Add corresponding elements to obtain the sum, that is
= ![\left[\begin{array}{ccc}-2+3&3+1\\2-1&4+2\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%2B3%263%2B1%5C%5C2-1%264%2B2%5C%5C%5Cend%7Barray%7D%5Cright%5D)
=
→ C
I don't know if I'm right the answer could be 6x
In standard form it would be y= 5x - 4
Answer:
6 units
Step-by-step explanation:
This coordinate is a three dimensional coordinate, which involves positive and negative x,y, and z axis.
The y axis is from left to right, i.e from negative to positive.
So 6 unit left is = -6 but it explains moving left .
Thank you
Answer:

Step-by-step explanation:
We can write
as follows:
![\frac{11s}{s^2-12s+52}\\=11\left [ \frac{s}{s^2-12s+52} \right ]\\=11\left [ \frac{s}{(s-6)^2+16} \right ]\\=11\left [ \frac{s-6+6}{(s-6)^2+16} \right ]\\=11\left [ \frac{s-6}{(s-6)^2+16} \right ]+\frac{66}{(s-6)^2+16}](https://tex.z-dn.net/?f=%5Cfrac%7B11s%7D%7Bs%5E2-12s%2B52%7D%5C%5C%3D11%5Cleft%20%5B%20%5Cfrac%7Bs%7D%7Bs%5E2-12s%2B52%7D%20%5Cright%20%5D%5C%5C%3D11%5Cleft%20%5B%20%5Cfrac%7Bs%7D%7B%28s-6%29%5E2%2B16%7D%20%5Cright%20%5D%5C%5C%3D11%5Cleft%20%5B%20%5Cfrac%7Bs-6%2B6%7D%7B%28s-6%29%5E2%2B16%7D%20%5Cright%20%5D%5C%5C%3D11%5Cleft%20%5B%20%5Cfrac%7Bs-6%7D%7B%28s-6%29%5E2%2B16%7D%20%5Cright%20%5D%2B%5Cfrac%7B66%7D%7B%28s-6%29%5E2%2B16%7D)
To find:
![L^{-1}\left [ \frac{11s}{s^2-12s+52 \right ]}\\=L^{-1}\left [ 11\left [ \frac{s-6}{(s-6)^2+16} \right ]+\frac{66}{(s-6)^2+16} \right ]](https://tex.z-dn.net/?f=L%5E%7B-1%7D%5Cleft%20%5B%20%5Cfrac%7B11s%7D%7Bs%5E2-12s%2B52%20%5Cright%20%5D%7D%5C%5C%3DL%5E%7B-1%7D%5Cleft%20%5B%2011%5Cleft%20%5B%20%5Cfrac%7Bs-6%7D%7B%28s-6%29%5E2%2B16%7D%20%5Cright%20%5D%2B%5Cfrac%7B66%7D%7B%28s-6%29%5E2%2B16%7D%20%5Cright%20%5D)
We will use formulae:

we get solution as :
![L^{-1}\left [ 11\left [ \frac{s-6}{(s-6)^2+16} \right ]+\frac{66}{(s-6)^2+16} \right ]\\=L^{-1}\left [ 11\left [ \frac{s-6}{(s-6)^2+4^2} \right ]+\frac{66}{4}\left [ \frac{4}{(s-6)^2+4^2} \right ] \right ]\\=11e^{6t}\cos 4t+\frac{33}{2}e^{6t}\sin 4t](https://tex.z-dn.net/?f=L%5E%7B-1%7D%5Cleft%20%5B%2011%5Cleft%20%5B%20%5Cfrac%7Bs-6%7D%7B%28s-6%29%5E2%2B16%7D%20%5Cright%20%5D%2B%5Cfrac%7B66%7D%7B%28s-6%29%5E2%2B16%7D%20%5Cright%20%5D%5C%5C%3DL%5E%7B-1%7D%5Cleft%20%5B%2011%5Cleft%20%5B%20%5Cfrac%7Bs-6%7D%7B%28s-6%29%5E2%2B4%5E2%7D%20%5Cright%20%5D%2B%5Cfrac%7B66%7D%7B4%7D%5Cleft%20%5B%20%5Cfrac%7B4%7D%7B%28s-6%29%5E2%2B4%5E2%7D%20%5Cright%20%5D%20%5Cright%20%5D%5C%5C%3D11e%5E%7B6t%7D%5Ccos%204t%2B%5Cfrac%7B33%7D%7B2%7De%5E%7B6t%7D%5Csin%204t)