Answer:
<h2>Carbon is the chemical backbone of life on Earth. Carbon compounds regulate the Earth’s temperature, make up the food that sustains us, and provide energy that fuels our global economy.
</h2><h2 /><h2>The carbon cycle.
</h2><h2>Most of Earth’s carbon is stored in rocks and sediments. The rest is located in the ocean, atmosphere, and in living organisms. These are the reservoirs through which carbon cycles.
</h2><h2 /><h2>NOAA technicians service a buoy in the Pacific Ocean designed to provide real-time data for ocean, weather and climate prediction.
</h2><h2>NOAA buoys measure carbon dioxide
</h2><h2>NOAA observing buoys validate findings from NASA’s new satellite for measuring carbon dioxide
</h2><h2>Listen to the podcast
</h2><h2>Carbon storage and exchange
</h2><h2>Carbon moves from one storage reservoir to another through a variety of mechanisms. For example, in the food chain, plants move carbon from the atmosphere into the biosphere through photosynthesis. They use energy from the sun to chemically combine carbon dioxide with hydrogen and oxygen from water to create sugar molecules. Animals that eat plants digest the sugar molecules to get energy for their bodies. Respiration, excretion, and decomposition release the carbon back into the atmosphere or soil, continuing the cycle.
</h2><h2 /><h2>The ocean plays a critical role in carbon storage, as it holds about 50 times more carbon than the atmosphere. Two-way carbon exchange can occur quickly between the ocean’s surface waters and the atmosphere, but carbon may be stored for centuries at the deepest ocean depths.
</h2><h2 /><h2>Rocks like limestone and fossil fuels like coal and oil are storage reservoirs that contain carbon from plants and animals that lived millions of years ago. When these organisms died, slow geologic processes trapped their carbon and transformed it into these natural resources. Processes such as erosion release this carbon back into the atmosphere very slowly, while volcanic activity can release it very quickly. Burning fossil fuels in cars or power plants is another way this carbon can be released into the atmospheric reservoir quickly.</h2>
Explanation:
<span>20 amino acids
hope this helps
:0
</span>
Answer:
A = Activator
B = Effector
Explanation:
An activator is a protein which typically binds to a short (50–1500 bp) region of DNA which might be located either upstream (mainly) or downstream of a gene so as to cause increased transcription. This particular region of DNA is known as enhancer and activator is also known as transcription factor. Activator is a trans-acting factor which binds to the cis-acting factor which is enhancer so as to enhance transcriptional expression.
But another protein named as effector may restrict activator from binding to the enhancer leading to a decrease in transcriptional expression by binding to the activator allosterically. Allosteric binding of effector to the activator causes conformational change in activator so it can no longer bind the enhancer.
Answer:
The correct answer will be option a and b.
Explanation:
The food is digested and absorbed in the small intestine, a long folded tube which lengths about 20 ft or 6m.
The small intestine increases the surface area for food absorption as they have circular folding as well as the finger-like projections called villi and microvilli in the lumen of the intestine. These villi help in absorption of the nutrients from the intestine.
Thus, option a and b are the correct options.
Bacterial infections were much harder to treat a long time ago because we didn't have the same technology or information that we do now. because we have worked so long on treating different things we have learned what works and what doesnt. the new technology has helped us understand the infection which led to us being able to find medication to treat said infection.