The bag contains 2+4+2=8 marbles in total.
We are going to find a probability of the opposite event: drawing marbles of same color.
There are three possibilities:
1. Drawing both green marbles
2. Drawing both yellow marbles
3. Drawing both red marbles
The probability of drawing both green marbles:
![P_1=\frac{2}{8}\cdot \frac{1}{7} = \frac{1}{4}\cdot \frac{1}{7}=\frac{1}{28}](https://tex.z-dn.net/?f=P_1%3D%5Cfrac%7B2%7D%7B8%7D%5Ccdot%20%5Cfrac%7B1%7D%7B7%7D%20%3D%20%5Cfrac%7B1%7D%7B4%7D%5Ccdot%20%5Cfrac%7B1%7D%7B7%7D%3D%5Cfrac%7B1%7D%7B28%7D)
The probability of drawing both yellow marbles:
![P_2=\frac{4}{8}\cdot \frac{3}{7} = \frac{1}{2}\cdot \frac{3}{7}=\frac{3}{14}](https://tex.z-dn.net/?f=P_2%3D%5Cfrac%7B4%7D%7B8%7D%5Ccdot%20%5Cfrac%7B3%7D%7B7%7D%20%3D%20%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20%5Cfrac%7B3%7D%7B7%7D%3D%5Cfrac%7B3%7D%7B14%7D)
The probability of drawing both red marbles:
![P_3=\frac{2}{8}\cdot \frac{1}{7} = \frac{1}{4}\cdot \frac{1}{7}=\frac{1}{28}](https://tex.z-dn.net/?f=P_3%3D%5Cfrac%7B2%7D%7B8%7D%5Ccdot%20%5Cfrac%7B1%7D%7B7%7D%20%3D%20%5Cfrac%7B1%7D%7B4%7D%5Ccdot%20%5Cfrac%7B1%7D%7B7%7D%3D%5Cfrac%7B1%7D%7B28%7D)
So, the probability of drawing marbles of the same color is:
![P=P_1+P_2+P_3=\frac{1}{28}+\frac{3}{14}+\frac{1}{28}=\frac{2}{28}+\frac{3}{14}=\frac{1}{14}+\frac{3}{14}=\frac{4}{14}=\frac{2}{7}](https://tex.z-dn.net/?f=P%3DP_1%2BP_2%2BP_3%3D%5Cfrac%7B1%7D%7B28%7D%2B%5Cfrac%7B3%7D%7B14%7D%2B%5Cfrac%7B1%7D%7B28%7D%3D%5Cfrac%7B2%7D%7B28%7D%2B%5Cfrac%7B3%7D%7B14%7D%3D%5Cfrac%7B1%7D%7B14%7D%2B%5Cfrac%7B3%7D%7B14%7D%3D%5Cfrac%7B4%7D%7B14%7D%3D%5Cfrac%7B2%7D%7B7%7D)
Now, the probability of drawing marbles of different colors is:
![1-\frac{2}{7}=\frac{5}{7}=0.7142](https://tex.z-dn.net/?f=1-%5Cfrac%7B2%7D%7B7%7D%3D%5Cfrac%7B5%7D%7B7%7D%3D0.7142)