1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
xeze [42]
3 years ago
14

Find the value of y so that the line passing through the two points have the given slope (2,3) (7,y) m=-2/5

Mathematics
1 answer:
Liono4ka [1.6K]3 years ago
8 0

Answer:

y = 1

Step-by-step explanation:

Find the slope of the line passing through the points (2,3) and (7,y):

m=\dfrac{y-3}{7-2}=\dfrac{y-3}{5}

The slope of the line is equal to

m=-\dfrac{2}{5},

then

\dfrac{y-3}{5}=-\dfrac{2}{5}\\ \\y-3=-2\\ \\y=-2+3\\ \\y=1

You might be interested in
Round to the nearest tenth 6.2x+1.2=8.9
Anuta_ua [19.1K]

Answer:

x = 1.2...

Step-by-step explanation:

Start with the given equation and isolate the variable.

6.2x + 1.2 = 8.9

Subtract 1.2 from each side:

6.2x = 7.7

Divide each side by 6.2:

x = 1.2...

7 0
3 years ago
Please thank my profile!
geniusboy [140]

Answer:

Thanks profile

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
What is the slope of the line that contains the points -2,7 and 2,3
Maurinko [17]

Answer:

slope = -1

Step-by-step explanation:

y2-y1 divided by x2-x1

3-7= -4

2-(-2) = 4

-4 divided by 4 = -1

8 0
3 years ago
What is 7 - (-4) ? I got -24
koban [17]

Answer:

11

Step-by-step explanation:

7-(-4) is 11. You must make the subtraction symbol in the middle to addition, since you have 2 negatives. Two negatives = postive. So after you do that it would be 7+4=11

Hope this helped!

6 0
3 years ago
Write the expression as either the sine, cosine, or tangent of a single angle. tan5x - tan2y / 1 + tan5x tan2y
Kryger [21]
\bf \textit{Sum and Difference Identities}
\\\\
tan(\alpha + \beta) = \cfrac{tan(\alpha)+ tan(\beta)}{1- tan(\alpha)tan(\beta)}
\qquad
tan(\alpha - \beta) = \cfrac{tan(\alpha)- tan(\beta)}{1+ tan(\alpha)tan(\beta)}\\\\
-------------------------------\\\\
\cfrac{tan(5x)-tan(2y)}{1+tan(5x)tan(2y)}\implies tan(5x-2y)
6 0
3 years ago
Other questions:
  • How do you solve: 21 11/12 plus 17 5/12
    10·2 answers
  • A ball is thrown strait up from the top of a 64 foot tall building with an initial speed of 48 feet per second. The height of th
    6·1 answer
  • Which could be used to solve this equation? 3 1/5 +n =9
    10·1 answer
  • What is x-4y=28 2x+y=2 on a graph
    11·1 answer
  • What is the product of 78 negative 16 negative 7 and negative 114th
    7·1 answer
  • The table shows how much an air-conditioning repair company charges for different numbers of hours of work. Write the equation i
    11·1 answer
  • Which is an irrational number
    8·2 answers
  • The perimeter of a triangle is
    13·1 answer
  • Pythagorean Theorem Comic Strip Mini Project (It's do in 3 hours)
    13·1 answer
  • Write a formula for the shaded regions help!<br> How would I answer this?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!