![\bf f(x)=y=2x+sin(x) \\\\\\ inverse\implies x=2y+sin(y)\leftarrow f^{-1}(x)\leftarrow g(x) \\\\\\ \textit{now, the "y" in the inverse, is really just g(x)} \\\\\\ \textit{so, we can write it as }x=2g(x)+sin[g(x)]\\\\ -----------------------------\\\\](https://tex.z-dn.net/?f=%5Cbf%20f%28x%29%3Dy%3D2x%2Bsin%28x%29%0A%5C%5C%5C%5C%5C%5C%0Ainverse%5Cimplies%20x%3D2y%2Bsin%28y%29%5Cleftarrow%20f%5E%7B-1%7D%28x%29%5Cleftarrow%20g%28x%29%0A%5C%5C%5C%5C%5C%5C%0A%5Ctextit%7Bnow%2C%20the%20%22y%22%20in%20the%20inverse%2C%20is%20really%20just%20g%28x%29%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Ctextit%7Bso%2C%20we%20can%20write%20it%20as%20%7Dx%3D2g%28x%29%2Bsin%5Bg%28x%29%5D%5C%5C%5C%5C%0A-----------------------------%5C%5C%5C%5C)
![\bf \textit{let's use implicit differentiation}\\\\ 1=2\cfrac{dg(x)}{dx}+cos[g(x)]\cdot \cfrac{dg(x)}{dx}\impliedby \textit{common factor} \\\\\\ 1=\cfrac{dg(x)}{dx}[2+cos[g(x)]]\implies \cfrac{1}{[2+cos[g(x)]]}=\cfrac{dg(x)}{dx}=g'(x)\\\\ -----------------------------\\\\ g'(2)=\cfrac{1}{2+cos[g(2)]}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Blet%27s%20use%20implicit%20differentiation%7D%5C%5C%5C%5C%0A1%3D2%5Ccfrac%7Bdg%28x%29%7D%7Bdx%7D%2Bcos%5Bg%28x%29%5D%5Ccdot%20%5Ccfrac%7Bdg%28x%29%7D%7Bdx%7D%5Cimpliedby%20%5Ctextit%7Bcommon%20factor%7D%0A%5C%5C%5C%5C%5C%5C%0A1%3D%5Ccfrac%7Bdg%28x%29%7D%7Bdx%7D%5B2%2Bcos%5Bg%28x%29%5D%5D%5Cimplies%20%5Ccfrac%7B1%7D%7B%5B2%2Bcos%5Bg%28x%29%5D%5D%7D%3D%5Ccfrac%7Bdg%28x%29%7D%7Bdx%7D%3Dg%27%28x%29%5C%5C%5C%5C%0A-----------------------------%5C%5C%5C%5C%0Ag%27%282%29%3D%5Ccfrac%7B1%7D%7B2%2Bcos%5Bg%282%29%5D%7D)
now, if we just knew what g(2) is, we'd be golden, however, we dunno
BUT, recall, g(x) is the inverse of f(x), meaning, all domain for f(x) is really the range of g(x) and, the range for f(x), is the domain for g(x)
for inverse expressions, the domain and range is the same as the original, just switched over
so, g(2) = some range value
that means if we use that value in f(x), f( some range value) = 2
so... in short, instead of getting the range from g(2), let's get the domain of f(x) IF the range is 2
thus 2 = 2x+sin(x)
![\bf 2=2x+sin(x)\implies 0=2x+sin(x)-2 \\\\\\ -----------------------------\\\\ g'(2)=\cfrac{1}{2+cos[g(2)]}\implies g'(2)=\cfrac{1}{2+cos[2x+sin(x)-2]}](https://tex.z-dn.net/?f=%5Cbf%202%3D2x%2Bsin%28x%29%5Cimplies%200%3D2x%2Bsin%28x%29-2%0A%5C%5C%5C%5C%5C%5C%0A-----------------------------%5C%5C%5C%5C%0Ag%27%282%29%3D%5Ccfrac%7B1%7D%7B2%2Bcos%5Bg%282%29%5D%7D%5Cimplies%20g%27%282%29%3D%5Ccfrac%7B1%7D%7B2%2Bcos%5B2x%2Bsin%28x%29-2%5D%7D)
hmmm I was looking for some constant value... but hmm, not sure there is one, so I think that'd be it
Answer:
C
Step-by-step explanation:
Find the surface area:
Bottom base: 57 × 27 = 1,539
Top base: 21 × 27 = 567
Rectangular face: 23 × 27 = 621
Rectangular face: 23 × 27 = 621
Trapezoidal face: (21 + 57) ÷ 2 × 15 = 585
Trapezoidal face: (21 + 57) ÷ 2 × 15 = 585
1,539 + 567 + 621 + 621 + 585 + 585 = 4,518
The surface area is 4,518 square inches
12.

13.

16.

is already in simplest form.