Answer: 2
Step-by-step explanation:
m = y2 - y1 / x2- x1
where slope is m,
so in this case it would be
m= 1-(-1) / 3-2
m=2/1
m=2
Note that you can do it either way
800 the strategy I used was adding 32 over and over 25 times
By using <em>triangle</em> properties and the law of the cosine twice, we find that the distance between points M and N is approximately 9.8 meters.
<h3>How to determine the distance between two points</h3>
In this problem we must determine the distance between two points that are part of a triangle and we can take advantage of properties of triangles to find it. First, we determine the measure of angle L by the law of the cosine:

L ≈ 62.464°
Then, we get the distance between points M and N by the law of the cosine once again:

MN ≈ 9.8 m
By using <em>triangle</em> properties and the law of the cosine twice, we find that the distance between points M and N is approximately 9.8 meters.
To learn more on triangles: brainly.com/question/2773823
#SPJ1
21/6 simplified 7/2 or 3 1/2
To answer this question, we need to know what like terms are. Like terms are terms whose variables and exponents are the same. The coefficients can be different, though. In this case, the like terms are -a²b and 5a²b (because of the definition above.