A random variable is used like this:
You close your eyes and point anywhere on the table to choose a number. Since the given random number table is made up of 3 digits, you only get the first two digits. We are also given a 70% of catching a fish, that means that the number you choose should not have a first two digit number greater than 70. If that happens, you go down to the next value. If you reach the bottom, you go up to the next column. This is done 3 times and multiplying the three numbers to get the chance for 1 trials. This is repeated 20 times and the average is obtained.
Could you tell me what the question is?
Answer:
0.4 I'm sorry if it wrong
Answer:
The calculated value of t= 0.1908 does not lie in the critical region t= 1.77 Therefore we accept our null hypothesis that fatigue does not significantly increase errors on an attention task at 0.05 significance level
Step-by-step explanation:
We formulate null and alternate hypotheses are
H0 : u1 < u2 against Ha: u1 ≥ u 2
Where u1 is the group tested after they were awake for 24 hours.
The Significance level alpha is chosen to be ∝ = 0.05
The critical region t ≥ t (0.05, 13) = 1.77
Degrees of freedom is calculated df = υ= n1+n2- 2= 5+10-2= 13
Here the difference between the sample means is x`1- x`2= 35-24= 11
The pooled estimate for the common variance σ² is
Sp² = 1/n1+n2 -2 [ ∑ (x1i - x1`)² + ∑ (x2j - x`2)²]
= 1/13 [ 120²+360²]
Sp = 105.25
The test statistic is
t = (x`1- x` ) /. Sp √1/n1 + 1/n2
t= 11/ 105.25 √1/5+ 1/10
t= 11/57.65
t= 0.1908
The calculated value of t= 0.1908 does not lie in the critical region t= 1.77 Therefore we accept our null hypothesis that fatigue does not significantly increase errors on an attention task at 0.05 significance level