1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Montano1993 [528]
3 years ago
5

A. Mean; constant

Mathematics
1 answer:
almond37 [142]3 years ago
6 0

Answer:

C

Step-by-step explanation:

You might be interested in
A balloon is 300 feet above a cliff. The angle of depression to the cliff edge is 40° 30'. What is the horizontal distance from
Daniel [21]

tan 40.5 = 300/x

x = 300/(tan 40.5)

x = 351

Answer: c. 351 feet

8 0
2 years ago
Which of the following is a solution of x^2-8x=-27
sveta [45]
(=-27) because that’s the end answer
5 0
2 years ago
A car is travelling at exactly 6 miles per hour and accelerates at a constant rate to exactly 65 miles per hour.
vichka [17]

Answer:

14878.04878miles/hours^2

Step-by-step explanation:

Let's find a solution by understanding the following:

The acceleration rate is defined as the change of velocity within a time interval, which can be written as:

A=(Vf-Vi)/T where:

A=acceleration rate

Vf=final velocity

Vi=initial velocity

T=time required for passing from Vi to Vf.

Using the problem's data we have:

Vf=65miles/hour

Vi=6miles/hour

T=14.8seconds

Using the acceleration rate equation we have:

A=(65miles/hour - 6miles/hour)/14.8seconds, but look that velocities use 'hours' unit while 'T' uses 'seconds'.

So we need to transform 14.8seconds into Xhours, as follows:

X=(14.8seconds)*(1hours/60minutes)*(1minute/60seconds)

X=0.0041hours

Using X=0.0041hours in the previous equation instead of 14.8seconds we  have:

A=(65miles/hour - 6miles/hour)/0.0041hours

A=(61miles/hour)/0.0041hours

A=(61miles)/(hour*0.0041hours)

A=61miles/0.0041hours^2

A=14878.04878miles/hours^2

In conclusion, the acceleration rate is 14878.04878miles/hours^2

7 0
3 years ago
The table shows the height of water in a pool as it is being filled. A table showing Height of Water in a Pool with two columns
icang [17]

Answer:

The height of the water increases 2 inches per minute.

Step-by-step explanation:

the slope is always the ratio of

y coordinate change / x coordinate change

in our case, x is the time (minutes), and y is the water height (inches).

we see, the longer the pool get filled, the higher the water gets. logical, right ?

by checking the data points we see :

with every 2 minutes passing the water height increases by 4 inches.

so, the slope is +4/+2 = 2/1 = 2

and that ratio tells us now the increase of the water height with every fraction or multiple of the measured 2-minute interval.

every 2 minutes 4 inches more.

so, e.g. every 3×2 = 6 minutes we get 3×4 = 12 inches more.

and - every 1/2 × 2 = 1 minute more we get 1/2 × 4 = 2 inches more.

4 0
2 years ago
A line passes through the point (0,6) and is parallel to the line with the equation y =
Tresset [83]

Answer:

First option is the correct choice.

Step-by-step explanation:

y - 6 = 1/5 x + 0

y = 1/5x + 6

Best Regards!

8 0
2 years ago
Read 2 more answers
Other questions:
  • What is the value of the 8 in this number...1,284,590?​
    10·1 answer
  • What is the perimeter of abc
    7·1 answer
  • A sample of lava has a volume of 15 ml and a mass of 47g what is its density?
    6·1 answer
  • ILL GIVE YOU BRAINLIST ! 4.34:02
    7·1 answer
  • A string of length 160cm is cut in to 2 pieces, in the ratio 3:5<br> find the length of each piece​
    7·1 answer
  • Samuel is buying a pair of boots with an original price of $80.
    13·2 answers
  • What's 5sqrtx -4 = 20
    10·1 answer
  • Find the expected value of the spinner.<br> 18<br> 120°<br> 15
    6·2 answers
  • The slope of a line is 1, and the y-intercept is -1. What is the equation of the line written in slope-intercept form?
    15·1 answer
  • What is equivalent to 2^5
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!