1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sergij07 [2.7K]
3 years ago
11

What is the value of the digit 8 in Alaska's population

Mathematics
1 answer:
Yuri [45]3 years ago
7 0
Well I found the number that you are referring to: (686,293) right?
anyway,I'm assuming that it's talking about the number 8 in the number which would be the Ten Thousands place.

You might be interested in
2w-6+w+5 how do you work this problem
sergejj [24]

You combine the numbers that have the same letter attached to them. Then you add or subtract the bumbers from each other to. After that you make the numbers and the numbers with letters into one equation

Ex: 13+5r+7r= 13+12r

Step-by-step explanation:

2w+w=3w If theres a letter by itself it means theres a 1.

6 0
3 years ago
-
OlgaM077 [116]

Answer: D

Step-by-step explanation:

g(x)=f(x-2)=8(x-2)+1=8x-16+1=8x-15

5 0
2 years ago
Read 2 more answers
May someone help me with 2-9? Please?
mylen [45]

2. Each side of a pentagon is the same size.

4cm x 5 = 20cm or 4cm+4cm+4cm+4cm+4cm = 20cm

3. Each side of a square is the same size.

13yd x 4 = 52yd or 13yd+13yd+13yd+13yd = 52yd

4. Add all sides together.

12m+12m+30m+30m = 84m

5. Again add all sides together.

16yd+16yd+4yd+4yd = 40yd

6. Each side of a square is the same size.

7in x 4 = 28in. or 7in+7in+7in+7in = 28in

7. Add all sides together.

2cm+2cm+3cm+3cm = 10cm

8. Each side of a rhombus is the same size. A rhombus has 4 sides.

23in x 4 = 92in or 23in+23in+23in+23in = 92in

9. A regular octagon has 8 sides and each side is the same size.

9cm x 8 = 72cm

7 0
4 years ago
One-half the square of b ?
Ymorist [56]

Answer:1/2b^2

Step-by-step explanation: The square is b^2?

7 0
3 years ago
Read 2 more answers
Sin4x.sin5x+sin4x.sin3x-sin2x.sinx=0
andreev551 [17]

Recall the angle sum identity for cosine:

cos(<em>x</em> + <em>y</em>) = cos(<em>x</em>) cos(<em>y</em>) - sin(<em>x</em>) sin(<em>y</em>)

cos(<em>x</em> - <em>y</em>) = cos(<em>x</em>) cos(<em>y</em>) + sin(<em>x</em>) sin(<em>y</em>)

==>   sin(<em>x</em>) sin(<em>y</em>) = 1/2 (cos(<em>x</em> - <em>y</em>) - cos(<em>x</em> + <em>y</em>))

Then rewrite the equation as

sin(4<em>x</em>) sin(5<em>x</em>) + sin(4<em>x</em>) sin(3<em>x</em>) - sin(2<em>x</em>) sin(<em>x</em>) = 0

1/2 (cos(-<em>x</em>) - cos(9<em>x</em>)) + 1/2 (cos(<em>x</em>) - cos(7<em>x</em>)) - 1/2 (cos(<em>x</em>) - cos(3<em>x</em>)) = 0

1/2 (cos(9<em>x</em>) - cos(<em>x</em>)) + 1/2 (cos(7<em>x</em>) - cos(3<em>x</em>)) = 0

sin(5<em>x</em>) sin(-4<em>x</em>) + sin(5<em>x</em>) sin(-2<em>x</em>) = 0

-sin(5<em>x</em>) (sin(4<em>x</em>) + sin(2<em>x</em>)) = 0

sin(5<em>x</em>) (sin(4<em>x</em>) + sin(2<em>x</em>)) = 0

Recall the double angle identity for sine:

sin(2<em>x</em>) = 2 sin(<em>x</em>) cos(<em>x</em>)

Rewrite the equation again as

sin(5<em>x</em>) (2 sin(2<em>x</em>) cos(2<em>x</em>) + sin(2<em>x</em>)) = 0

sin(5<em>x</em>) sin(2<em>x</em>) (2 cos(2<em>x</em>) + 1) = 0

sin(5<em>x</em>) = 0   <u>or</u>   sin(2<em>x</em>) = 0   <u>or</u>   2 cos(2<em>x</em>) + 1 = 0

sin(5<em>x</em>) = 0   <u>or</u>   sin(2<em>x</em>) = 0   <u>or</u>   cos(2<em>x</em>) = -1/2

sin(5<em>x</em>) = 0   ==>   5<em>x</em> = arcsin(0) + 2<em>nπ</em>   <u>or</u>   5<em>x</em> = arcsin(0) + <em>π</em> + 2<em>nπ</em>

… … … … …   ==>   5<em>x</em> = 2<em>nπ</em>   <u>or</u>   5<em>x</em> = (2<em>n</em> + 1)<em>π</em>

… … … … …   ==>   <em>x</em> = 2<em>nπ</em>/5   <u>or</u>   <em>x</em> = (2<em>n</em> + 1)<em>π</em>/5

sin(2<em>x</em>) = 0   ==>   2<em>x</em> = arcsin(0) + 2<em>nπ</em>   <u>or</u>   2<em>x</em> = arcsin(0) + <em>π</em> + 2<em>nπ</em>

… … … … …   ==>   2<em>x</em> = 2<em>nπ</em>   <u>or</u>   2<em>x</em> = (2<em>n</em> + 1)<em>π</em>

… … … … …   ==>   <em>x</em> = <em>nπ</em>   <u>or</u>   <em>x</em> = (2<em>n</em> + 1)<em>π</em>/2

cos(2<em>x</em>) = -1/2   ==>   2<em>x</em> = arccos(-1/2) + 2<em>nπ</em>   <u>or</u>   2<em>x</em> = -arccos(-1/2) + 2<em>nπ</em>

… … … … … …    ==>   2<em>x</em> = 2<em>π</em>/3 + 2<em>nπ</em>   <u>or</u>   2<em>x</em> = -2<em>π</em>/3 + 2<em>nπ</em>

… … … … … …    ==>   <em>x</em> = <em>π</em>/3 + <em>nπ</em>   <u>or</u>   <em>x</em> = -<em>π</em>/3 + <em>nπ</em>

<em />

(where <em>n</em> is any integer)

5 0
3 years ago
Other questions:
  • Making Sense of Slope - Item 32544
    6·1 answer
  • What’s the correct answer for this ?
    5·1 answer
  • X+y=7<br> -x+y=-5<br><br> Quero a equação pelo método de adição, rápido u.u
    10·1 answer
  • The midpoint between two points is( 1 , 5 ). One of those points is ( 9 , 3 ), find the other. DUE in 2 HOURS, will give Brainli
    11·2 answers
  • Multiply the binomials (5x+3) And (2x+4)
    14·1 answer
  • PLZ HELP ASAP!!!!!! BRAINLEST FIRST TO HELP!!!!!!!!!!
    14·1 answer
  • Riley bought 2 1/2 dozen donuts to bring to the office. since there are 12 donuts in a dozen, how many donuts did riley buy?
    12·1 answer
  • 5x * 2y<br><br> Please help<br> ASAP
    5·2 answers
  • Mr. Lester's maximum heart rate is 180 beats per minute. When he exercises at the gym.
    15·2 answers
  • Help help help please
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!