Answer:
Nucleus
Explanation: I did the quiz and got it right. Have an amazing day!
<span>When the fuel of the rocket is consumed, the acceleration would be zero. However, at this phase the rocket would still be going up until all the forces of gravity would dominate and change the direction of the rocket. We need to calculate two distances, one from the ground until the point where the fuel is consumed and from that point to the point where the gravity would change the direction.
Given:
a = 86 m/s^2
t = 1.7 s
Solution:
d = vi (t) + 0.5 (a) (t^2)
d = (0) (1.7) + 0.5 (86) (1.7)^2
d = 124.27 m
vf = vi + at
vf = 0 + 86 (1.7)
vf = 146.2 m/s (velocity when the fuel is consumed completely)
Then, we calculate the time it takes until it reaches the maximum height.
vf = vi + at
0 = 146.2 + (-9.8) (t)
t = 14.92 s
Then, the second distance
d= vi (t) + 0.5 (a) (t^2)
d = 146.2 (14.92) + 0.5 (-9.8) (14.92^2)
d = 1090.53 m
Then, we determine the maximum altitude:
d1 + d2 = 124.27 m + 1090.53 m = 1214.8 m</span>
Conduction involves physical contact to charge, well induction does not.
Learn more at: <span>www.physicsclassroom.com/class/estatics/Lesson-2/Charging-by-Conduction</span>
The behavior of an ideal gas at constant temperature obeys Boyle's Law of
p*V = constant
where
p = pressure
V = volume.
Given:
State 1:
p₁ = 10⁵ N/m² (Pa)
V₁ = 2 m³
State 2:
V₂ = 1 m³
Therefore the pressure at state 2 is given by
p₂V₂ = p₁V₁
or
p₂ = (V₁/V₂) p₁
= 2 x 10⁵ Pa
Answer: 2 x 10⁵ N/m² or 2 atm.