PART A)
As we know that energy of light depends on its wavelength and frequency as following formula

now we know that wavelength of blue light is less than the red light so here energy of blue light will be more
also we know that

so here if wavelength is smaller for blue light so its frequency will be high and the speed of both light will be same in same medium
PART B)
Since we know that frequency of blue light is more than red light as well as wavelength of blue light is less than the wavelength of blue light so here blue light will have more energy
When blue light and red light strike the metal surface then due to more energy of blue light it will release some loosely bonded electrons from metal surface which will contribute in current.
here if we increase the intensity of light then the number of photons that contain the blue light of certain energy will be more and that will contribute more current
So here quantification help as we know that due to quantization only certain frequency or energy will lead to eject electron so all colours will not give this current
Answer:
Here are the names and symbols
H is Hydrogen
Au is Gold
Potassium is K
Mg is Magnesium
Zinc is Zn
Iron is Fe
Cl is Chlorine
Na is Natrium/Sodium
Copper is Cu
Ag is Silver
Answer: a) the force will be repulsive
b) the ratio of the new force to the old force will be 2
c) O
Explanation:
a) since charge -Q is moved from A to B, this implies that sphere A is negatively charged. The two spheres are now negatively charged and will repel themselves.
b) initial force will be -q(-Q)/d2
Adding extra charge -Q will cause change on B to become -2Q
The new force will be - 2Q(-q)/d2
Dividing new force by old force will give 2
C) if B is neutralized, the net charge becomes 0 and there will be no force on it.
Yes you should if you will like to. It is your opinion so follow your dreams if they are your dreams.
Because melting point<span> and </span>freezing point<span> describe the</span>same<span> transition of matter, in this case from liquid to solid (</span>freezing) or equivalently, from solid to liquid (melting<span>).</span>